高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接线性图嵌入算法及其在人脸识别中的应用

陈江峰 袁保宗

陈江峰, 袁保宗. 直接线性图嵌入算法及其在人脸识别中的应用[J]. 电子与信息学报, 2010, 32(6): 1311-1315. doi: 10.3724/SP.J.1146.2008.01111
引用本文: 陈江峰, 袁保宗. 直接线性图嵌入算法及其在人脸识别中的应用[J]. 电子与信息学报, 2010, 32(6): 1311-1315. doi: 10.3724/SP.J.1146.2008.01111
Chen Jiang-feng, Yuan Bao-zong. A Direct LGE Algorithm and Its Application to Face Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1311-1315. doi: 10.3724/SP.J.1146.2008.01111
Citation: Chen Jiang-feng, Yuan Bao-zong. A Direct LGE Algorithm and Its Application to Face Recognition[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1311-1315. doi: 10.3724/SP.J.1146.2008.01111

直接线性图嵌入算法及其在人脸识别中的应用

doi: 10.3724/SP.J.1146.2008.01111

A Direct LGE Algorithm and Its Application to Face Recognition

  • 摘要: 图嵌入算法使用无向有权图来描述数据集的流形结构,目前许多流形学习算法都可统一到这个框架下。线性图嵌入算法(LGE)在高维小样本应用中往往会遇到的奇异值问题,因此需把数据集预先投影到PCA子空间,往往会丢失了一些有用的信息。本文提出了一种直接的线性图嵌入算法(DLGE),可直接从原始数据集中提取特征。此外DLGE算法相对于基于迭代的正交化算法,在最小二乘意义下对截断的征向量进行正交化处理,计算简便有效。在多个人脸数据库库上的仿真结果表明,相对于传统算法,DLGE算法具有更强的人脸表征能力,更好的分类性能,且更加鲁棒。
  • Seung H Sebastian and Lee Daniel D. The manifold ways of perception [J].Science.2000, 290(5500):2268-2279[2]Turk M and Pentland A P. Face recognition using eigenfaces [C]. IEEE Conf. Computer Vision and Pattern Recognition, Maui, HI, USA, Jun. 3-6, 1991: 586-591.[3]Belhumeur P N, Hespanha J P, and Kriegman D J. Eigenfaces vsfisherfaces: recognition using class specific linear projection [J].. IEEE Transactions on Pattern Analysis and Machine Intelligence.1997, 19(7):711-720[4]Yang M H. Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods [C]. Fifth IEEE International Conference on Automatic Face and Gesture Recognition (FG02), Washington, USA, May 1-3, 2002: 411-416.[5]Roweis S T and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding [J].Science.2000, 290(5500):2323-2326[6]Belkin M and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]. Advances in Neural Information Processing Systems 14, Vancouver, British Columbia, Canada, Dec. 3-8, 2001: 585-591.[7]Yan Shuicheng, Xu Dong, and Zhang Benyu, et al.. Graph embedding and extensions: A general framework for dimensionality reduction [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2007, 29(1):40-51[8]Cai Deng.[J].He Xiaofei, and Han Jiawei. Spectral regression for efficient regularized subspace learning [C]. IEEE International Conference on Computer Vision (ICCV07), Rio de Janeiro, Brazil, Oct. 14-2.2007,:-[9]Cai Deng, He Xiaofei, and Han Jiawei. SRDA: an efficient algorithm for large scale discriminant analysis [J].IEEE Transactions on Knowledge and Data Engineering.2008, 20(1):1-12[10]He Xiaofei.[J].Cai Deng, and Yan Shuicheng, et al.. Neighborhood preserving embedding [C]. Tenth IEEE International Conference on Computer Vision (ICCV2005), Beijing, China, Oct. 17-2.2005,:-[11]He Xiaofei, Yan Shuicheng, and Hu Yuxiao, et al.. Face recognition using laplacianfaces [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27(3):328-340[12]Cai Deng, He Xiaofei, and Han Jiawei, et al.. Orthogonal laplacianfaces for face recognition [J].IEEE Transactions on Image Processing.2006, 15(11):3608-3614[13]Eldar Y C. Least-squares orthogonalization using semidefinite programming [J]. Linear Alg. Appl., 2007, 412( Issues 2-3): 453-470.[14]Yu H Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition [J].Pattern Recognition.2001, 34(3):2067-2070[15]Cai Deng, He Xiaofei, and Han Jiawei. Semi-supervised discriminant analysis[C]. IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, Oct. 14-20, 2007: 21-27.
  • 加载中
计量
  • 文章访问数:  3076
  • HTML全文浏览量:  94
  • PDF下载量:  1378
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-08
  • 修回日期:  2010-03-30
  • 刊出日期:  2010-06-19

目录

    /

    返回文章
    返回