高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多特征Mean Shift的人脸跟踪算法

张涛 蔡灿辉

张涛, 蔡灿辉. 基于多特征Mean Shift的人脸跟踪算法[J]. 电子与信息学报, 2009, 31(8): 1816-1820. doi: 10.3724/SP.J.1146.2008.01094
引用本文: 张涛, 蔡灿辉. 基于多特征Mean Shift的人脸跟踪算法[J]. 电子与信息学报, 2009, 31(8): 1816-1820. doi: 10.3724/SP.J.1146.2008.01094
Zhang Tao, Cai Can-hui. A Face Tracking Algorithm Based on Multiple Feature Mean Shift[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1816-1820. doi: 10.3724/SP.J.1146.2008.01094
Citation: Zhang Tao, Cai Can-hui. A Face Tracking Algorithm Based on Multiple Feature Mean Shift[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1816-1820. doi: 10.3724/SP.J.1146.2008.01094

基于多特征Mean Shift的人脸跟踪算法

doi: 10.3724/SP.J.1146.2008.01094
基金项目: 

国家自然科学基金(60772164),福建省自然科学基金(A0710009)和福建省科技计划项目(2005H034)资助课题

A Face Tracking Algorithm Based on Multiple Feature Mean Shift

  • 摘要: 该文把局部三值模式(Local Ternary Patterns, LTP)纹理特征引入Mean Shift跟踪算法,提出了基于多特征的Mean Shift人脸跟踪算法以解决Mean shift跟踪算法的鲁棒性问题。通过对LTP纹理特征的分析、研究,提出了一个LTP关键纹理模型,既增强了目标的关键纹理信息,又简化了LTP纹理模型。在此基础上,提出一种基于LTP关键纹理特征和肤色特征的Mean Shift人脸跟踪算法,有效地解决了Mean Shift算法的鲁棒性问题。为进一步提高对快速运动目标的跟踪速度和跟踪性能,该文引入了卡尔曼滤波器对目标进行预测。实验结果表明,该文的算法在目标定位的准确性和跟踪性能上比Mean Shift算法均有明显的提高。
  • Comaniciu D, Ramesh V, and Meer P. Real time tracking ofnon-rigid objects using mean shift[C]. Computer Vision andPattern Recognition, Hilton Head Island, SC, USA, Jun.13-15, 2000, Vol. 2: 142-149.[2]Wu Y and Huang T S. Robust visual tracking by integratingmultiple cues based on co-inference learning[J].InternationalJournal of Computer Vision.2004, 58(1):55-71[3]Triesch J and Von der Malsburg C. Self-organized integrationof adaptive visual cues for face tracking[C]. Automatic Faceand Gesture Recognition, Grenoble, France, Mar. 28-30, 2000:102-107.[4]Xu X and Li B. Head tracking using particle filter withintensity gradient and color histogram[C]. Conference onMultimedia and Expo, Amsterdam, Netherlands, Jul. 6-9,2005: 888-891.[5]Ojala T, Pietikainen M, and Harwood D. A comparativestudy of texture measures with classification based on featuredistribution[J].Pattern Recognition.1996, 29(1):51-59[6]Nguyen Q A, Antonio R K, and Shen C H. Enhancedkernel-based tracking for monochromatic and thermographicvideo[C]. Advanced Video and Signal Based Surveillance,Sydney, Australia, Nov. 11, 2006: 28.[7]王永忠, 梁彦, 赵春晖, 等. 基于多特征自适应融合的核跟踪方法[J]. 自动化学报, 2008, 34(1): 393-399.Wang Y Z, Liang Y, and Zhao C H, et al.. Kernel-basedtracking based on adaptive fusion of multiple cues[J]. ActaAutomatica Sinica, 2008, 34(4): 393-399.[8]宁纪锋, 吴成柯. 一种基于纹理模型的目标跟踪算法[J]. 模式识别与人工智能, 2007, 20(5): 612-618.Ning J F and Wu C K. A mean shift tracking algorithm basedon texture model[J]. Pattern Recognition and ArtificialIntelligence, 2007, 20(5): 612-618.[9]Tan X Y and Bill T. Enhanced local texture feature sets forface recognition under difficult lighting conditions[C].Analysis and Modeling of Faces and Gestures, Rio de Janeiro,Brazil, Oct. 20, 2007: 168-182.[10]Comaniciu D, Ramesh V, and Meer P. Kernel-based objecttracking[J].Pattern Analysis and Machine Intelligence.2003,25(5):564-577[11]Jiang Z L, Li S F, and Gao D F. An adaptive mean shifttracking method using multiscale image[C]. Wavelet Analysisand Pattern Recognition, Beijing, China, Nov. 2-4, 2007, Vol.3: 1060-1066.[12]Ojala T, Pietikainen M, and Maenpaa T. Multiresolutiongray-scale and rotation invariant texture classification withlocal binary patterns[J].Pattern Analysis and MachineIntelligence.2002, 24(7):971-987[13]Dellaert F and Thorpe C. Robust car tracking using kalmanfiltering and bayesian templates[C]. Conference on IntelligentTransportation Systems, Pittsburgh PA, Etats-Unis, Oct.15-17, 1997, Vol. 3207: 72-83.
  • 加载中
计量
  • 文章访问数:  3942
  • HTML全文浏览量:  83
  • PDF下载量:  1882
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-09-04
  • 修回日期:  2009-03-09
  • 刊出日期:  2009-08-19

目录

    /

    返回文章
    返回