高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非降采样 Contourlet变换的非线性图像增强新算法

张林 朱兆达

张林, 朱兆达. 基于非降采样 Contourlet变换的非线性图像增强新算法[J]. 电子与信息学报, 2009, 31(8): 1786-1790. doi: 10.3724/SP.J.1146.2008.01025
引用本文: 张林, 朱兆达. 基于非降采样 Contourlet变换的非线性图像增强新算法[J]. 电子与信息学报, 2009, 31(8): 1786-1790. doi: 10.3724/SP.J.1146.2008.01025
Zhang Lin, Zhu Zhao-da. A Novel Nonlinear Method for Image Enhancement Based on Nonsubsampled Contourlet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1786-1790. doi: 10.3724/SP.J.1146.2008.01025
Citation: Zhang Lin, Zhu Zhao-da. A Novel Nonlinear Method for Image Enhancement Based on Nonsubsampled Contourlet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1786-1790. doi: 10.3724/SP.J.1146.2008.01025

基于非降采样 Contourlet变换的非线性图像增强新算法

doi: 10.3724/SP.J.1146.2008.01025

A Novel Nonlinear Method for Image Enhancement Based on Nonsubsampled Contourlet Transform

  • 摘要: 为了克服传统去图像噪声算法的限制,该文提出一种基于非降采样(Nonsubsampled)Contourlet变换的增强新算法(NNIEM-NSCT)。此新算法通过充分利用方向子带相关性的自适应贝叶斯阈值,既保护了图像边缘细节,又可更好地抑制图像噪声。其次,文中构造的非线性增强匹配函数,通过改变变换域的系数能有效对图像强弱边缘进行不同程度的增强。实验结果证明,该文新算法在图像细节处理上,优于基于NSCT的方法,细节方差( DV) 大约为NSCT的2倍,背景方差(BV)基本保持不变,并且具有更好的视觉效果。
  • Dippel S, Stahl M, Wiemker R, and Blaffert T. Multiscalecontrast enhancement for radiographies: Laplacian pyramidversus fast wavelet transform. IEEE Transactions on MedicalImaging, 2002, 21(4): 343-353.[2]Po D D and Do M N. Directional multiscale modeling ofimages using the contourlet transform[J].IEEE Transactionson Image Processing.2006, 15(6):1610-1620[3]何宏, 唐志航等. 基于小波多尺度积的图像增强新算法. 计算机应用与软件, 2007, 24(3): 163-165.He Hong and Tang Zhi-hang, et al.. Novel algorithm for imageenhancement based on wavelet multiscale product. ComputerApplication and Software, 2007, 24(3): 163-165.[4]Do M N and Vetterli M. The contourlet transform: Anefficient directional multiresolution image representation[J].IEEE Transactions on Image Processing.2005, 14(12):2091-2106[5]梁栋, 沈敏等. 一种基于Contourlet递归Cycle Spinning的图像去噪方法. 电子学报, 2005, 33(11): 2044-2046.Liang Dong and Shen Min, et al.. A method for imagedenoising based on the contourlet transform using recursivecycle spinning. Acta Electronica Sinica, 2005, 33(11):2044-2046.[6]Zhou J, Cunha A L, and Do M N. Nonsubsampled contourlettransform: construction and application in enhancement.Proc. of IEEE Intl Conf on Image Processing, Genoa, Italy,Sep. 2005: 469-472.[7]Cunha A L, Zhou J, and Do M N. The nonsubsampledcontourlet transform: theory, design and applications[J].IEEETransactions on Image Processing.2006, 15(10):3089-3101[8]Feng Peng, Pan Ying-jun, Wei Biao, Jin Wei, and Mi De-ling.Enhancing retinal image by the Contourlet transform[J].Pattern Recognition Letters.2007, 28(4):516-522[9]Khan M A U, Khan M K, and Khan M A. Coronaryangiogram image enhancement using decimation-freedirectional filter banks. Proc. Int. Conf. Acoutics, Speech andSignal Proc.(ICASSP), Montreal, QC, Canada, 2004:441-444.[10]Chang S G, Yu B, and Vetterli M. Spatially adaptive waveletthresholding with context modeling for image denoising[J].IEEE Transactions on Image Processing.2000, 9(9):1522-1531[11]Da C and Minh N D. Nonsubsampled contourilet transform:filter design and applications in denoising[C]. IEEEInternational Conference on Image Processing, Genova, Italy,2005: 749-752.[12]Nezhadarya E and Shamsollahi M B. Image contrastenhancement by Contourlet transform. 48th InternationalSymposium ELMAR-2006 focused on Multimedia SignalProcessing and Communications, June 2006: 81-84.
  • 加载中
计量
  • 文章访问数:  3858
  • HTML全文浏览量:  116
  • PDF下载量:  982
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-26
  • 修回日期:  2009-03-05
  • 刊出日期:  2009-08-19

目录

    /

    返回文章
    返回