高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于良分布的亚像素定位角点的图像配准

葛永新 杨丹 雷明

葛永新, 杨丹, 雷明. 基于良分布的亚像素定位角点的图像配准[J]. 电子与信息学报, 2010, 32(2): 427-432. doi: 10.3724/SP.J.1146.2008.00983
引用本文: 葛永新, 杨丹, 雷明. 基于良分布的亚像素定位角点的图像配准[J]. 电子与信息学报, 2010, 32(2): 427-432. doi: 10.3724/SP.J.1146.2008.00983
Ge Yong-xin, Yang Dan, Lei Ming. Image Registration Based on Well-Distributed Corners with Sub-Pixel Localization[J]. Journal of Electronics & Information Technology, 2010, 32(2): 427-432. doi: 10.3724/SP.J.1146.2008.00983
Citation: Ge Yong-xin, Yang Dan, Lei Ming. Image Registration Based on Well-Distributed Corners with Sub-Pixel Localization[J]. Journal of Electronics & Information Technology, 2010, 32(2): 427-432. doi: 10.3724/SP.J.1146.2008.00983

基于良分布的亚像素定位角点的图像配准

doi: 10.3724/SP.J.1146.2008.00983

Image Registration Based on Well-Distributed Corners with Sub-Pixel Localization

  • 摘要: 针对Harris检测出的角点位置会发生偏移和易产生伪角点,以及在角点匹配过程中计算复杂,容易产生误匹配等缺点,该文提出了基于良分布的亚像素定位角点的图像配准方法。该方法首先使用多尺度Harris算子检测图像的角点作为初始兴趣点,并采用自适应非极大值抑制对兴趣点的数量进行限制,以减少后续过程的计算复杂度,提高算法效率,同时使得角点在图像中处于良分布状态。然后利用亚像素定位技术进行精确定位,排除伪角点和不稳定的角点。最后使用随机抽样一致性算法对初始匹配进行鲁棒的模型参数估计。实验结果表明算法配准效率改进明显,并具有良好的精确性和鲁棒性。
  • Barbara Zitova and Jan Flusser. Image registration methods: a survey[J].Image and Vision Computing.2003, 21(11):977-1000[2]刘贵喜,王雷. 基于区域选择和特征点匹配的图像配准算法[J]. 光电子激光,2007, 18(8): 999-1002.Liu Gui-xi and Wang Lei. An image registration method based on region selecting and feature points matching[J].Journal of OptoelectronicsLaser.2007, 18(8):999-1002[3]王婧,朱梦宇,赵保军,何佩琨. 基于小波和改进型Hausdorff距离的遥感图像配准方法[J]. 电子学报,2006, 34(12): 2167-2169.Wang Jing, Zhu Meng-yu, Zhao Bao-jun, and He Pei-kun. A remote sensing image registration method based on wavelet decomposition and the improved Hausdorff Distance[J]. Acta Electronica Sinca, 2006, 34(12): 2167-2169.[4]付朝霞,韩焱,咎波. 基于角点检测的图像镶嵌算法[J]. 光电工程,2007, 30(5): 126-130.Fu Zhao-xia, Han Yan, and Zan Bo. Method of image mosaic based on corner detection[J]. Opto-Electronic Engineering, 2007, 30(5): 126-130.[5]马丽涛, 杨丹, 张小洪, 李博. 一种新的基于条件数的图像配准算法[J]. 中国图象图形学报,2008, 13(2): 277-283.Ma Li-tao, Yang Dan, Zhang Xiao-hong, and Li Bo. A new method for image registration based on condition number[J]. Journal of Image and Graphics, 2008, 13(2): 277-283.[6]徐玮,王炜,张茂军,吴玲达. 一种基于角点匹配的视图合成方法[J]. 系统仿真学报,2007, 19(14): 3263-3265.Xu Wei, Wang Wei, Zhang Mao-jun, and Wu Ling-da. Corner matching-based approach of view synthesis[J]. Journal of System Simulation, 2007, 19(14): 3263-3265.[7]Harris C and Stephens M J. A combined corner and edge detector[C]. Proc. Fourth Alvey Vision Conference, Manchester, UK, 1988: 147-152.[8]Mikolajczyk K and Schmid C. An affine invariant interest point detector[C]. Proc. Seventh European Conf. Computer Vision, Copenhagen, Denmark, 2002: 128-142.Brown M and Lowe D G. Invariant features from interest point groups[C]. In British Machine Vision Conference, Cardiff, Wales, 2002: 656-665.[9]Brown M, Szeliski R, and Winder S. Multi-image matching using multi-scale oriented patches[C]. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, San Diego, may, 2005: 510-517.[10]Fischler M A and Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of ACM.1981, 24(6):381-395
  • 加载中
计量
  • 文章访问数:  3702
  • HTML全文浏览量:  97
  • PDF下载量:  1254
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-04
  • 修回日期:  2009-11-23
  • 刊出日期:  2010-02-19

目录

    /

    返回文章
    返回