高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义的监督局部保留投影算法

王晓明 王士同

王晓明, 王士同. 广义的监督局部保留投影算法[J]. 电子与信息学报, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946
引用本文: 王晓明, 王士同. 广义的监督局部保留投影算法[J]. 电子与信息学报, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946
Wang Xiao-ming, Wang Shi-tong. Generalized Supervised Locality Preserving Projection[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946
Citation: Wang Xiao-ming, Wang Shi-tong. Generalized Supervised Locality Preserving Projection[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946

广义的监督局部保留投影算法

doi: 10.3724/SP.J.1146.2008.00946
基金项目: 

国家863计划项目(2007AA1Z158,2006AA10Z313)和国家自然科学基金(60704047)资助课题

Generalized Supervised Locality Preserving Projection

  • 摘要: 针对监督的局部保留投影算法(Supervised Locality Preserving Projection,SLPP)在小样本情况下矩阵的奇异性问题,该文提出了一种广义的监督局部保留投影算法(Generalized Supervised Locality Preserving Projection,GSLPP)。GSLPP在大样本情况下等价于SLPP,在小样本情况下却可以等价转换到一个低维空间中来求解,从而有效解决了小样本问题。最后,实验结果验证了该方法的有效性。
  • 宋枫溪, 高秀梅, 刘树海等. 统计模式识别中的维数削减与低损降维[J]. 计算机学报, 2005, 28(11): 1915-1922.Song Feng-xi, Gao Xiu-mei, and Liu Shu-hai, et al..Dimensionality reduction in statistical pattern recognitionand low loss dimensionality reduction [J]. Chinese Journal ofComputers, 2005, 28(11): 1915-1922.[2]He X and Niyogi P. Locality preserving projections [C]. Proc.Conf. Advances in Neural Information Processing Systems,Vancouver, Canada, 2003: 585-591.[3]Kokiopoulou E and Saad Y. Orthogonal neighborhoodpreserving projections: A projection-based dimensionalityreduction technique [J].IEEE Transactions on PatternAnalysis and Machine Intelligence.2007, 29(12):2143-2156[4]申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J].模式识别与人工智能, 2008, 21(2): 233-239.Shen Zhong-hua, Pan Yong-hui, and Wang Shi-tong. Asupervised locality preserving projection algorithm fordimensionality reduction [J]. Pattern Recognition andArtificial Intelligence, 2008, 21(2): 233-239.[5]Tao Q, Wu G W, and Wang J. The theoretical analysis ofFDA and applications [J].Pattern Recognition.2006, 39(6):1199-1204[6]杨键, 杨静宇, 叶晖等. Fisher线性鉴别分析的理论研究及其应用[J]. 自动化学报, 2003, 29(4): 482-493.Yang Jian, Yang Jing-yu, Ye Hui, et al.. Theory of fisherlinear discriminant analysis and its application [J]. ActaAutomatic Sinica, 2003, 29(4): 482-493.[7]Liu J, Chen S C, and Tan X Y. A study on three lineardiscriminant analysis based methods in small sample sizeproblem[J].Pattern Recognition.2008, 41(1):102-116[8]Zhuang X S and Dai D Q. Improved discriminate analysis forhigh-dimensional data and its application to face recognition[J].Pattern Recognition.2007, 40(5):1570-1578[9]Cai D, He X, and Han J, et al.. Orthogonal laplacianfaces forface recognition [J].IEEE Transactions on Image Processing.2006, 15(11):3608-3614[10]Turk M and Pentland A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience.1991, 3(1):71-86[11]Masashi Sugiyama. Dimensionality reduction of multimodallabeled data by local Fisher discriminant analysis [J]. Journalof Machine Learning Research, 2007, 8(5): 1027-1061.[12]Jiang L X, Cai Z H, and Wang D H, et al.. Survey ofimproving k-nearest-neighbor for classification [C]. FourthInternational Conference on Fuzzy Systems and KnowledgeDiscovery (FSKD), Haikou, China, Aug 24-27, 2007: 679-683.
  • 加载中
计量
  • 文章访问数:  3646
  • HTML全文浏览量:  105
  • PDF下载量:  1201
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-07-24
  • 修回日期:  2009-03-09
  • 刊出日期:  2009-08-19

目录

    /

    返回文章
    返回