免疫克隆SAR图像分割算法
doi: 10.3724/SP.J.1146.2008.00863
Immune Clonal SAR Image Segmentation Algorithm
-
摘要: 由于存在相干斑噪声的影响,使得常规的图像分割技术应用于SAR图像时,效果往往较差。该文提出一种新人工免疫系统SAR图像分割算法,算法首先提取每幅图像的纹理特征,并对其进行实数编码,然后通过借鉴生物学免疫系统的抗体克隆选择机理,构造适合于图像分割的克隆算子,以较快的收敛速度优化目标函数。实验结果表明,新算法是一种有效的SAR 图像区域分割方法。
-
关键词:
- 合成孔径雷达;图像分割;免疫克隆;聚类
Abstract: Because of the multiplicative nature of the speckle noise in SAR images, it is difficult to solve SAR image segmentation problems using general image segmentation technique. A novel SAR image segmentation algorithm based on an artificial immune system is proposed. After extracting texture features from an image and encoding them with real numbers, it determines partitioning of the feature vectors by optimizing the objective function based on clonal operator. The experimental results show that the novel algorithm is feasible and effective for SAR image segmentation. -
Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images [M]. Norwood: Artech House Inc, 1998: 88-204.[2]Dammert P B G, Asken J I H, and Kuhlmann S.Unsupervised segmentation of multitemporal interferomentricSAR images[J].IEEE Transactions on Geoscience and RemoteSensing.1999, 37(9):2259-2271[3]Dekker R J. Texture analysis and classification of ERS SARimages for map updating of urban areas in the Netherland[J].IEEE Transactions on Geoscience and Remote Sensing.2003,41(9):1950-1958[4]Kersten P R, Lee Jong-Sen, and Ainsworth T L.Unsupervised classification of polarimentric SyntheticAperture Radar images using fuzzy clustering and EMclustering[J].IEEE Transactions on Geoscience and RemoteSensing.2005, 43(3):519-527[5]Maulik U and Bandyopadhyay S. Genetic algorithm-basedclustering technique[J].Pattern Recognition.2000, 33(9):1455-1465[6]Gong Mao-guo, Du Hai-feng, and Jiao Li-cheng. Optimalapproximation of linear systems by artificial immuneresponse[J].Science in China Series F-Information Sciences.2006, 49(1):63-79[7]Jain A K, Murty M N, and Flynn P J. Data, clustering: Areview[J].ACM Computing Surveys.1993, 31(3):264-323[8]Pan H, Zhu J, and Han D. Genetic algorithms applied tomulticlass clustering for gene expression data[J].Genomics,Proteomics Bioinformatics.2003, 1(4):279-287[9]Hall L O, Ozyurt I B, and Bezdek J C. Clustering with agenetically optimized approach[J].IEEE Transactions onEvolutionary Computation.1999, 3(2):103-112[10]Clausi D A and Yue B. Comparing CooccurrenceProbabilities and Markov random fields for texture analysisof SAR sea ice imagery[J].IEEE Transactions on Geoscienceand Remote Sensing.2004, 42(1):215-228
计量
- 文章访问数: 3583
- HTML全文浏览量: 66
- PDF下载量: 828
- 被引次数: 0