高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双选择信道下OFDM系统中一种基于新Kalman滤波估计的Turbo均衡

屠佳 蔡跃明 徐友云

屠佳, 蔡跃明, 徐友云. 双选择信道下OFDM系统中一种基于新Kalman滤波估计的Turbo均衡[J]. 电子与信息学报, 2009, 31(6): 1390-1394. doi: 10.3724/SP.J.1146.2008.00787
引用本文: 屠佳, 蔡跃明, 徐友云. 双选择信道下OFDM系统中一种基于新Kalman滤波估计的Turbo均衡[J]. 电子与信息学报, 2009, 31(6): 1390-1394. doi: 10.3724/SP.J.1146.2008.00787
Tu Jia, Cai Yue-ming, Xu You-yun. Turbo Equalization Based on a New Kalman Filter for OFDM over Doubly-Selective Channels[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1390-1394. doi: 10.3724/SP.J.1146.2008.00787
Citation: Tu Jia, Cai Yue-ming, Xu You-yun. Turbo Equalization Based on a New Kalman Filter for OFDM over Doubly-Selective Channels[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1390-1394. doi: 10.3724/SP.J.1146.2008.00787

双选择信道下OFDM系统中一种基于新Kalman滤波估计的Turbo均衡

doi: 10.3724/SP.J.1146.2008.00787
基金项目: 

江苏省自然科学基金(BK2006701,BK2007002)和国家自然科学基金(60672079)资助课题

Turbo Equalization Based on a New Kalman Filter for OFDM over Doubly-Selective Channels

  • 摘要: 在OFDM系统中,信道的快速时变性破坏了子载波间的正交性,从而导致子载波间干扰(ICI),降低了系统性能。该文针对双选择信道的时变特性,提出了一种新的Kalman滤波信道估计算法,将其应用于过采样的复指数基扩展模型(OCE-BEM),从而将一个OFDM符号周期内信道参数时变的问题转化为参数时不变问题,同时,将这种新的Kalman滤波器与基于ICI抑制的低复杂度LMMSE Turbo均衡器相结合,并辅以循环冗余码校验(CRC)控制算法迭代次数,从而不需要更多的导频符号,在保证算法性能的基础上,减小算法的计算时延和复杂度。理论分析和仿真结果表明,该文给出的方法在双选择信道下能够有效地跟踪信道变化并抑制ICI影响。
  • 宋铁成,尤肖虎,沈连丰,宋晓晋. 基于导频和修正Kalman滤波的MIMO-OFDM 信道估计方法. 通信学报,2007, 28(2):23-28.Song Tie-cheng, You Xiao-hu, Shen Lian-feng, and SongXiao-jin. Channel estimation method for MIMO-OFDMsystems based on pilots and modified Kalman filter[J].Journal on Communications, 2007, 28(2): 23-28.[2]Han Ki-young, Lee Sang-wook, Lim Jun-seok, and SungKoeng-mo. Channel estimation for OFDM with fast fadingchannels by modified Kalman filter[J].IEEE Trans. onConsumer Electronics.2004, 50(2):443-449[3]Li Xin and Wong T F. Turbo equalization with nonlinearKalman filtering for time-varying frequency-selective fadingchannels[J].IEEE Trans. on Wireless Communications.2007,6(2):691-700[4]Song Jian-ming and Ding Xuan-hao. Modified Kalman filterfor MIMO-OFDM time-varying channel tracking[J]. ModernElectronics Technique, 2005, 204(13): 14-19.[5]Tsatsanis M K, Giannakis G B, and Zhou G. Estimation andequalization of fading channels with random coefficients[C][J].International Conference on Acoustics, Speech and SignalProcessing 1996, Atlanta, 7-10 May.1996, 2:1093-1096[6]Davis L M, Collings I B, and Evans R J. Coupled estimatorsfor equalization of fast-fading mobile channels[J]. IEEETrans. on Commun., 1998, 46(10): 1262-1265.[7]Barhumi I, Leus G, and Moonen M. Equalization for OFDMover doubly selective channels[J].IEEE Trans. on SignalProcessing.2006, 54(4):1445-1457[8]Haykin S. Adaptive Filter Theory[M]. Fourth EditionEnglewood Cliff: Prentice Hall, 2002, Chapter 10, 12 and 14.[9]Schniter P. Low-complexity equalization of OFDM indoubly-selective channels[J].IEEE Trans. on SignalProcessing.2004, 52(4):1002-1011[10]Cai X and Giannakis G B. Bounding performance andsuppressing intercarrier interference in wireless mobileOFDM[J].IEEE Trans. on Commun.2003, 51(12):2047-2056[11]Jeon W G, Chang K H, and Cho Y S. An equalizationtechnique for orthogonal frequency-division multiplexingsystems in time-variant multipath channels[J].IEEE Trans.on Commun.1999, 47(1):27-32
  • 加载中
计量
  • 文章访问数:  3524
  • HTML全文浏览量:  88
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-06-19
  • 修回日期:  2008-11-24
  • 刊出日期:  2009-06-19

目录

    /

    返回文章
    返回