基于聚类的高光谱图像无损压缩
doi: 10.3724/SP.J.1146.2008.00660
Lossless Coding for Hyperspectral Images Based on Spectral Cluster
-
摘要: 高光谱海量数据的有效压缩成为遥感技术发展中需要迫切解决的问题。该文提出了一种基于聚类的高光谱图像无损压缩算法。针对高光谱图像不同频谱波段间相关性不同的特点,根据相邻波段相关性大小进行波段分组。由于高光谱图像波段数量较多,采用自适应波段选择算法对高光谱图像进行降维,以获取信息量较大的部分波段,利用k均值算法对降维后的波段谱矢量进行聚类。采用多波段预测的方案对各组中的波段进行预测,对于各个分类中的每个像素,分别选取与其空间相邻的已编码的部分同类点进行训练,从而获得当前像素的谱间最优预测系数。对AVIRIS型高光谱图像的实验结果表明,该算法可显著降低压缩后的平均比特率。
-
关键词:
- 高光谱图像;无损压缩;波段分组;谱向聚类
Abstract: The request for efficient compression of hyperspectral images becomes pressing. A cluster-based lossless compression algorithm for hyperspectral images is presented. Because the spectral correlation differs in different bands, spectral band grouping algorithm is introduced to divide hyperspectral images into groups according to the correlation between each adjacent bands. The important bands which contain large useful information can be determined by using the adaptive band selection algorithm, on which k-means clustering is carried out according to the spectral vectors. The current band is predicted by using several preceding bands. For each pixel which belongs to a certain cluster, some causal neighboring pixels which have been coded are trained to get the optimal predictive coefficients. The reference bands are compressed by JPEG-LS standard while the final predictive errors are coded by Golomb-Rice. Experimental results show that the proposed methods produce competitive results when compared with other state-of-the-art algorithms. -
苏令华, 李纲, 衣同胜, 等. 一种稳健的高光谱图像压缩方法[J]. 光学精密工程, 2007, 15(10): 1609-1615.Su L H, Li G, and Yi T S, et al.. A robust hyperspectral imagecompression method [J]. Opt. Precision Eng., 2007, 15(10):1609-1615.[2]Mielikainen J and Toivanen P. Clustered DPCM for thelossless compression of hyperspectral images [J].IEEE Trans.on Geoscience and Remote Sensing.2003, 41(12):2943-2946[3]Rizzo F, Carpentieri B, and Motta G, et al.. Low-complexitylossless compression of hyperspectral imagery via linearprediction [J].IEEE Signal Processing Letters.2005, 12(2):138-141[4]Jain S K and Adjeroh D A. Edge-based prediction for losslesscompression of hyperspectral images [C]. Data compressionconference, Snowbird, USA, 2007: 153-162.[5]Zhang J and Liu G Z. An efficient reordering predictionbasedlossless compression algorithm for hyperspectralimages [J].IEEE Geoscience and Remote Sensing Letters.2007, 4(2):283-287[6]Dragotti P L, Poggi G, and Ragozini A R P. Compression ofmultispectral images by three-dimensional SPIHT algorithm[J].IEEE Trans. on Geoscience and Remote Sensing.2000,38(1):416-428[7]柴焱, 计文平, 沈兰荪. 一种基于混合整型变换和3D-SPIHT的高光谱图像嵌入式无损压缩方法[J]. 电子学报, 2007, 35(9):1770-1773.Chai Y, Ji W P, and Shen L S. Hyperspectral Image losslesscompression algorithm based on hybrid transform and3D-SPHIT [J]. Acta Electronica Sinica, 2007, 35(9):1770-1773.[8]Rao A K and Bhargava S. Multispectral data compressionusing bidirectional interband prediction [J].IEEE Trans. onGeoscience and Remote Sensing.1996, 34(2):385-397[9]刘春红, 赵春晖, 张凌雁. 一种新的高光谱遥感图像降维方法[J]. 中国图像图形学报, 2005, 10(2): 218-222.Liu C H, Zhao C H, and Zhang L Y. A new nethod ofhyperspectral remote sensing image dimensional reduction [J].Journal of Image and Graphics, 2005, 10(2): 218-222.[10]孙蕾, 罗建书. 基于多波段谱间预测的高光谱图像无损压缩算法[J].电子与信息学报.2007, 29(12):2876-2879浏览[11]苏令华, 吕韶昱,万健伟. 基于多预测器的高光谱图像无损压缩[J]. 国防科技大学学报,2007, 29(1): 44-48.Su L H, Lv S Y, and Wan J W. Lossless compression ofhyperspectral image based on multi-predictor [J]. Journal ofNational University of defense Technalogy, 2007, 29(1):44-48. 期刊类型引用(8)
1. 陈思伟,崔兴超,李铭典,陶臣嵩,李郝亮. 基于深度CNN模型的SAR图像有源干扰类型识别方法. 雷达学报. 2022(05): 897-908 . 百度学术
2. 侯文栋,冀贞海,吕超峰,冷魁. SAR欺骗干扰工程化设计研究. 航天电子对抗. 2017(03): 34-37 . 百度学术
3. 史洪印,贾宝京,齐兆龙. 基于压缩感知的非均匀脉冲SAR欺骗性干扰抑制方法. 仪器仪表学报. 2016(03): 525-532 . 百度学术
4. 张颂,陈远征,夏兴宇. 干扰机布站位置对合成孔径雷达相干干扰效果的影响分析. 航天电子对抗. 2015(06): 36-39 . 百度学术
5. 吴亿锋,王彤,吴建新,文才. 基于广义旁瓣相消的机载雷达抗密集转发式干扰方法. 电子与信息学报. 2014(05): 1049-1054 . 本站查看
6. 马孝尊,柏仲干,朱震,谢虹. SAR转发式相参干扰效果分析. 电光与控制. 2013(02): 74-79 . 百度学术
7. 赵博,杨军,孙光才,周峰,保铮. 一种虚假大场景SAR快速转发式欺骗干扰方法研究. 电子与信息学报. 2012(04): 963-968 . 本站查看
8. 王峰. 转发式弹载干扰机对抗技术研究. 中国电子科学研究院学报. 2012(04): 423-426 . 百度学术
其他类型引用(18)
-
计量
- 文章访问数: 3632
- HTML全文浏览量: 86
- PDF下载量: 1237
- 被引次数: 26