高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于增量贝叶斯疑似度的事件驱动故障定位算法

张成 廖建新 朱晓民

张成, 廖建新, 朱晓民. 一种基于增量贝叶斯疑似度的事件驱动故障定位算法[J]. 电子与信息学报, 2009, 31(6): 1501-1504. doi: 10.3724/SP.J.1146.2008.00610
引用本文: 张成, 廖建新, 朱晓民. 一种基于增量贝叶斯疑似度的事件驱动故障定位算法[J]. 电子与信息学报, 2009, 31(6): 1501-1504. doi: 10.3724/SP.J.1146.2008.00610
Zhang Cheng, Liao Jian-xin, Zhu Xiao-min. An Event-Driven Fault Localization Algorithm Based on Incremental Bayesian Suspected Degree[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1501-1504. doi: 10.3724/SP.J.1146.2008.00610
Citation: Zhang Cheng, Liao Jian-xin, Zhu Xiao-min. An Event-Driven Fault Localization Algorithm Based on Incremental Bayesian Suspected Degree[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1501-1504. doi: 10.3724/SP.J.1146.2008.00610

一种基于增量贝叶斯疑似度的事件驱动故障定位算法

doi: 10.3724/SP.J.1146.2008.00610
基金项目: 

国家杰出青年科学基金(60525110),国家973 计划项目(2007CB307100,2007CB307103),新世纪优秀人才支持计划(NCET -04-0111)和电子信息产业发展基金项目(基于3G的移动业务应用系统)资助课题

An Event-Driven Fault Localization Algorithm Based on Incremental Bayesian Suspected Degree

  • 摘要: 现有的故障定位算法大多基于时间窗口,窗口大小设置的合理与否会对算法准确度产生重要影响。为了避免因窗口设置不当造成算法性能的下降,该文以概率加权的二分图作为故障传播模型,提出了一种基于增量贝叶斯疑似度(Incremental Bayesian Suspected Degree,IBSD)的启发式故障定位算法。IBSD算法采用事件驱动的方式依次分析观察到的征兆,通过增量计算对应故障的贝叶斯疑似度,确定当前征兆前提下最有可能的故障集。仿真实验表明,IBSD算法具有较高的故障检测率和较低的故障误检率,即使在部分告警无法观察的情况下,算法依然具有较高的故障检测率。算法具有多项式计算复杂度,可以满足大规模通信网故障定位的要求。
  • Steinder M and Sethi A S. The present and future of eventcorrelation: A need for end-to-end service fault localization[C]. Proc. World Multi-Conf. Systemic, Cybernetics, andInformatics (SCI), Orlando, FL, 2001: 124-129.[2]Steinder M and Sethi A S. A survey of fault localizationtechniques in computer networks [J]. Science of ComputerProgramming, 2004, 53(2): 165-194.[3]Mas C and Thiran P. A review on fault location methods andtheir application to optical networks [J]. Optical NetworksMagazine, 2001, 2(4): 73-87.[4]Mas C and Thiran P. An efficient algorithm for locating softand hard failures in WDM networks [J].IEEE Journal onSelected Areas in Communications.2000, 18(10):1900-1911[5]Zhao Y, Chen Y, and Bindel D. Towards unbiased end-to-endnetwork diagnosis [C]. Proceedings of the ACM SIGCOMM2006 Conference on Applications, Technologies, Architectures,and Protocols for Computer Communications, Pisa, Italy,2006: 219-230.[6]Katzela I and Schwartz M. Schemes for fault identification incommunication networks [J]. IEEE/ACM Trans. onNetworking, 1995, 3(6): 733-764.[7]Yemini S and Kliger S. A coding approach to eventcorrelation, integrated network management [C]. Proceedingsof the Fourth International Symposium on IntegratedNetwork Management, Santa Barbara, California, USA, 1995:266-277.[8]Steinder M and Sethi A S. End-to-end service failurediagnosis using belief networks [C]. Proc. NetworkOperations and Management Symposium (NOMS), Florence,Italy, 2002: 375-390.[9]Steinder M and Sethi A S. Probabilistic fault localization incommunication systems using belief networks [J].IEEE/ACM Trans. on Networking.2004, 12(5):809-822[10]Huang Xiao-hui, Zou Shi-hong, Wang Wen-dong, and ChengShi-duan. Fault management for Internet service: Modelingand algorithms [C]. IEEE International Conference onCommunications, Istanbul, Turkey, June 2006, 2: 854-859.[11]黄晓慧, 邹仕洪, 王文东, 程时端. Internet服务故障管理: 分层模型和算法 [J]. 软件学报, 2007, 18(10): 2584-2594.Huang Xiao-hui, Zou Shi-hong, Wang Wen-dong, and ChengShi-duan. Internet services fault management: Layeringmodel and algorithm. Journal of Software, 2007, 18(10):2584-2594.[12]Steinder M and Sethi A S. Probabilistic event-driven faultdiagnosis through incremental hypothesis updating [C].IFIP/IEEE Eighth International Symposium on IntegratedNetwork Management, Colorado, USA, 2003: 635-648.
  • 加载中
计量
  • 文章访问数:  3647
  • HTML全文浏览量:  93
  • PDF下载量:  852
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-05-15
  • 修回日期:  2008-09-18
  • 刊出日期:  2009-06-19

目录

    /

    返回文章
    返回