高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间映射复Directionlet变换的图像纹理分类

白静 贾建华 焦李成

白静, 贾建华, 焦李成. 基于空间映射复Directionlet变换的图像纹理分类[J]. 电子与信息学报, 2009, 31(6): 1332-1336. doi: 10.3724/SP.J.1146.2008.00513
引用本文: 白静, 贾建华, 焦李成. 基于空间映射复Directionlet变换的图像纹理分类[J]. 电子与信息学报, 2009, 31(6): 1332-1336. doi: 10.3724/SP.J.1146.2008.00513
Bai Jing, Jia Jian-hua, Jiao Li-cheng. Texture Classification Based on Mapping Complex Directionlet[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1332-1336. doi: 10.3724/SP.J.1146.2008.00513
Citation: Bai Jing, Jia Jian-hua, Jiao Li-cheng. Texture Classification Based on Mapping Complex Directionlet[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1332-1336. doi: 10.3724/SP.J.1146.2008.00513

基于空间映射复Directionlet变换的图像纹理分类

doi: 10.3724/SP.J.1146.2008.00513
基金项目: 

国家863计划项目(2007AA12Z136),国家973规划项目(2006CB705700),国家自然科学基金(60672126),国家教育部博士点基金(20050701013);教育部长江学者和创新团队支持计划(IRT0645)资助课题

Texture Classification Based on Mapping Complex Directionlet

  • 摘要: Directionlet变换具有多方向各向异性基函数,能有效捕捉图像的奇异性特征。该文在此基础上构造了一种空间映射的复Directionlet变换,使其具备了更为灵活的方向选择性和近似的平移不变性。利用空间映射方法获得Directionlet变换的复函数空间,对多尺度各方向子带系数提取能量特征用于图像纹理分类。通过对Brodatz图像库及真实SAR图像的纹理分类实验表明,该文算法较之小波分析及其它多尺度几何分析方法,具有更优的纹理分类性能,也验证了Directionlet工具在图像分析中的应用潜力。
  • Meyer F G and Coifman R R. Directional image compressionwith Brushlets[C]. Proceedings of the IEEE-SP InternationalSymposium. Paris, France, June 1996: 18-21.[2]Cands E J. Ridgelets: theory and applications[D]. [Ph.D.dissertation]. Department of Statistics, Stanford University,1998.[3]Cands E J and Donoho D L. Curvelets and curvilinearintegrals[R]. Department of Statistics, Stanford University,CA, Tech. Rep., Dec. 1999.[4]Do M N and Vetterli M. The Contourlet transform: Anefficient directional multiresolution image representation[J].IEEE Trans. Image on Processing.2005, 14(12):2091-2106[5]Velisavljevic' V, Beferull-Lozano B, and Vetterli M, et al..Directionlets: anisotropic multi-directional representationwith separable filtering[J]. IEEE Trans. Image on Processing.2006, 15(7): 1916-1933.[6]Velisavljevic' V, Beferull-Lozano B, and Vetterli M, et al..Low-rate reduced complexity image compression usingDirectionlets[C]. IEEE International Conference on ImageProcessing. (ICIP), Atlanta, GA, October 2006: 1601-1604.[7]Velisavljevic' V, Beferull-Lozano B, and Vetterli M. Spacefrequencyquantization for image compression withDirectionlets [J].IEEE Trans. Image on Processing.2007,16(7):1761-1773[8]Jobanputra R and Clausi D A. Preserving boundaries forimage texture segmentation using grey level co-occurringprobabilities[J].Pattern Recognition.2006, 39(2):234-245[9]Fernandes F C A, Van Spaendonck R L C, and Burrus C S.Multidimensional, mapping-based complex wavelettransforms[J].IEEE Trans. Image on Processing.2005, 14 (1):110-124[10]Fernandes F C A. Directional, shift-insensitive, complexwavelet transforms with controllable redundancy[D]. [Ph.D.dissertation]. Rice Univ. Houston, TX. 1, 2002.[11]Simoncelli E P, Freeman W T, and Adelson E H, et al..Shiftable multiscale transforms[J].IEEE Trans. onInformation Theory.1992, 38(2):587-607[12]Tan Shan, Zhang Xiang-rong, and Jiao Li-cheng. ABrushlet-based feature set applied to texture classification[C].CIS. 2004, LNCS 3314: 1175-1180.[13]Hu Ying, Hou Biao, and Wang Shuang, et al.. Textureclassification via stationary-wavelet based Contourlettransform[C]. IWICPAS 2006, 2006, LNCS 4153: 485-494.
  • 加载中
计量
  • 文章访问数:  3511
  • HTML全文浏览量:  101
  • PDF下载量:  1130
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-28
  • 修回日期:  2009-01-06
  • 刊出日期:  2009-06-19

目录

    /

    返回文章
    返回