高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多注双间隙耦合腔电子电导计算与模拟

全亚民 丁耀根 王树忠 高冬平

全亚民, 丁耀根, 王树忠, 高冬平. 多注双间隙耦合腔电子电导计算与模拟[J]. 电子与信息学报, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248
引用本文: 全亚民, 丁耀根, 王树忠, 高冬平. 多注双间隙耦合腔电子电导计算与模拟[J]. 电子与信息学报, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248
Quan Ya-min, Ding Yao-gen, Wang Shu-zhong, Gao Dong-ping. Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248
Citation: Quan Ya-min, Ding Yao-gen, Wang Shu-zhong, Gao Dong-ping. Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248

多注双间隙耦合腔电子电导计算与模拟

doi: 10.3724/SP.J.1146.2008.00248
基金项目: 

国家自然科学基金(60701011)资助课题

Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity

  • 摘要: 该文基于空间电荷波理论模型,推导出多注双间隙耦合腔电子电导的单模理论和多模理论计算公式。比较结果显示对于双间隙耦合腔,单模理论计算结果足够准确。由粒子模拟结果与计算结果的一致证明了计算结果的正确性。最后使用粒子模拟研究了电压调制系数和聚焦磁场对电子电导的影响。结果显示当电压调制系数小于0.1并且聚焦磁场大于1.5倍布里渊磁场时,小信号理论计算的电子电导是准确的。
  • Vlasov D. Calculation of the conductance introduced by anelectron beam into a resonator. Radiotekhnika i Electronika(USSR), 1963, 8(5): 878-880.[2]Branch C M. Electron beam coupling in interaction gaps ofcylindrical symmetry. IEEE Trans. on Electron Devices,1961, ED-8(5): 193-207.[3]Wilsen C B, Yue Y L, and Antonsen Jr T M, et al.. Asimulation study of beam loading on a cavity[J].IEEE Trans.on Plasma Sci.2002, 30(3):1160-1168[4]Craig E J. The beam-loading admittance of gridless klystrongaps. IEEE Trans. on Electron Devices, 1967, ED-14(5):273-278.[5]Kowalczyk R, Yue Y L, and Antonsen Jr T M , et al.. ACspace charge effects on beam loading of a cavity[J].IEEE Trans.on Electron Devices.2005, 52(9):2087-2095[6]Kowalczyk R, Yue Y L, and Gilgenbach R M. Effects of afinite axial magnetic field on the beam loading of a cavity[J].IEEE Trans. on Electron Devices.2004, 51(9):1522-1527[7]Lien E and Robinson D. Study and investigation leading tothe design of broadband highpower klystron amplifiers.Technical Report for United States And ElectronicsCommand.[J].March.1967,No.ECOM 一02157.1967,:-[8]林福民, 丁耀根. 速调管耦合双间隙输出回路的绝对稳定性判据. 真空电子技术, 2004, (2): 10-12.Lin F M and Ding Y G. Criterion of absolute stability ofoutput circuit with coupling two-gap cavity of klystron.Vacuum Electronics, 2004, (2): 10-12.[9]Wang Yong, Ding Y G, and Liu P K, et al.. Development ofan S-band klystron with bandwidth of more than 11%[J].IEEETrans. on Plasma Sci.2006, 34(3):572-575[10]Nguyen K T, Pershing D E, Abe D K, and Levush B L.Bandwidth extension of an S-band, fundamental-modeeight-beam klystron[J].IEEE Trans. on Plasma Sci.2006,34(3):576-583[11]Ding Y G, Zhu Y S, and Yin X L, et al.. Research progress onC-band broadband multibeam klystron[J].IEEE Trans. onElectron Devices.2007, 54(4):624-631[12]Wessel-Berg T. A general theory of klystrons with arbitraryextended interaction fields. Stanford University, HansenMicrowave Laboratory Reports, 1957: 376.[13]谢家麟, 赵永翔. 速调管群聚理论. 北京: 科学出版社, 1966:83-124.Xie J L and Zhao Y X. Klystron Bunching Theory. Beijing;Science Press, 1966: 83-124.
  • 加载中
计量
  • 文章访问数:  3279
  • HTML全文浏览量:  102
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-09
  • 修回日期:  2008-07-07
  • 刊出日期:  2009-05-19

目录

    /

    返回文章
    返回