TE21模回旋返波振荡的起振分析
doi: 10.3724/SP.J.1146.2008.00233
Analysis of the Gyro-Back Wave Oscillations of the TE21 Mode
-
摘要: 该文基于回旋行波放大器的线性理论,对TE21模回旋返波振荡起振长度和起振频率随导引中心半径、电压、速度比、注电流及工作磁场等参数的变化进行了详细的数值模拟,并给出了相应的物理解释,分析了TE21模基波和二次谐波回旋返波振荡特点,研究了分布损耗对回旋返波振荡的抑制效果。所得结果对回旋行波放大器和回旋返波振荡器的设计有参考意义。Abstract: Based on the linear theory of gyro-TWA, this paper is focused on the numerical simulations for the relations of the starting length and starting frequency with beam radius, voltage, velocity ratio, beam current and magnetic field for a gyro-BWO operating in the TE21 mode at fundamental or second harmonic and the corresponding physical mechanisms is explained. And the effect of distributed wall losses on the suppression of the TE21 mode gyro-BWO is discussed. The results in this paper are helpful for the design of gyro-TWA and gyro-BWOs.
-
Chu K R. Overview of research on the gyrotron traveling-wave amplifier[J].IEEE Transactions on Plasma Science.2002, 30(3):903-908[2]Chu K R. The electron cyclotron maser, Reviews Modern Physics, 2004, 76(2): 489-540.[3]Jiao Chong-qing and Luo Ji-run. Linear theory of the electron cyclotron maser based on the TM circular waveguide mode[J].Physics Plasmas.2006, 13(7):073104-073108[4]Kou C S, Wang Q S, and McDermott D B, et al.. High-power harmonic gyro-TWTspart I: linear theory and oscillation study[J].IEEE Transactions on Plasma Science.1992, 20(3):155-162[5]Jiao Chong-qing and Luo Ji-run. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam[J].Physics Plasmas.2006, 13(11):113101-113107[6]Zhang Shi-chang. Linear and nonlinear investigation of a coaxial-waveguide cyclotron autoresonance maser amplifier[J].Physics Plasmas.2004, 11(8):3969-3975[7]Zhang Shi-chang and Thumm M. Gyrokinetic description of the structural eccentricity influence on the starting current of a coaxial-cavity gyrotron[J].Physics Plasma.1999, 6(5):1622-1626[8]焦重庆, 罗积润. 有损金属圆波导中电磁波传输特性的研究. 物理学报, 2006, 55(12): 6360-6367.[9]Jiao Chong-qing and Luo Ji-run. Propagation of[10]electromagnetic wave in a lossy cylindrical waveguide. Acta[11]Physica Sinica, 2006, 55(12): 6360-6367.[12]Luo Ji-run and Jiao Chong-qing. Effect of the lossy layer thickness of metal cylindrical waveguide wall on the propagation constant of electromagnetic modes[J].Application Physics Letters.2006, 88(6):061115-061117[13]Chu K R and Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers[J].IEEE Transactions on Plasma Science.1988, 16(2):90-104[14]Kou C S. Starting oscillation conditions for gyrotron backward oscillators[J].Physics Plasmas.1994, 1(9):3093-3099[15]Chang T H and Chen S H. Stepwise frequency tuning of a gyrotron backward-wave oscillator[J].Physics Plasmas.2005, 12(1):013104-013108[16]Chu K R, et al.. Theory and experiment of ultrahigh gain gyrotron traveling wave amplifier[J].IEEE Transactions on Plasma Science.1999, 27(2):391-404[17]Nguyen K T, et al.. Design of Ka-band gyro-TWT for radar applications[J].IEEE Transactions on Electron Development.2001, 48(1):108-115
计量
- 文章访问数: 3157
- HTML全文浏览量: 83
- PDF下载量: 692
- 被引次数: 0