高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于核相关滤波器的SAR车辆目标检测与识别

潘卓 王宾辉 高鑫 王岩飞

潘卓, 王宾辉, 高鑫, 王岩飞. 基于核相关滤波器的SAR车辆目标检测与识别[J]. 电子与信息学报, 2009, 31(5): 1148-1152. doi: 10.3724/SP.J.1146.2008.00221
引用本文: 潘卓, 王宾辉, 高鑫, 王岩飞. 基于核相关滤波器的SAR车辆目标检测与识别[J]. 电子与信息学报, 2009, 31(5): 1148-1152. doi: 10.3724/SP.J.1146.2008.00221
Pan Zhuo, Wang Bin-hui, Gao Xin, Wang Yan-fei. Kernel Correlation Filter for Vehicle Detection and Recognition in SAR Images[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1148-1152. doi: 10.3724/SP.J.1146.2008.00221
Citation: Pan Zhuo, Wang Bin-hui, Gao Xin, Wang Yan-fei. Kernel Correlation Filter for Vehicle Detection and Recognition in SAR Images[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1148-1152. doi: 10.3724/SP.J.1146.2008.00221

基于核相关滤波器的SAR车辆目标检测与识别

doi: 10.3724/SP.J.1146.2008.00221

Kernel Correlation Filter for Vehicle Detection and Recognition in SAR Images

  • 摘要: 针对合成孔径雷达(Synthetic Aperture Radar, SAR)目标检测与识别方法对目标方位角敏感的问题,该文基于相关滤波器理论与核特征分析方法,提出一种对SAR目标方位角具有较强鲁棒性的核相关滤波器。该滤波器使用特征向量降低了对训练图像的依赖性,利用目标在非线性空间的高维特征提高了识别能力,并利用核函数解决了高维矢量的内积计算问题。MSTAR实测SAR图像数据的对比实验结果表明,该文所提出的滤波器在低虚警概率下,能够保持较高的检测概率,并且对目标方位角失真具有较强的容忍性,不需要存储目标模板和估计目标方位角,就能够实现高准确率的目标检测与识别。
  • Ross T D, Bradley J J, and Hudson L J,et al.. SAR ATR -Sowhats the problem? - An MSTAR perspective. Proceedingsof SPIE-Algorithms for Synthetic Aperture Radar ImageryVI, Orlando, Florida, April 1999, 3721: 662-672.[2]Devore M D and OSullivan J A. Performance complexitystudy of several approaches to automatic target recognitionfrom SAR images[J].IEEE Trans. on Aerospace and ElectronicSystems.2002, 38(2):632-648[3]Shenoy R K. The design and use of unconstrained imagefilters and features for SAR detection and recognition. [Ph.D.dessirtation], Carnegie Mellon University, 2001.[4]Singh R. Advanced correlation filter for multi-class syntheticaperture radar detection and classification. [M.S thesis],Carnegie Mellon University, 2002.[5]Casasent D and Patnaik R. Automated synthesis of distortion-invariant filters: AutoMinace. Proceedings of SPIEIntelligentRobots and Computer Vision XXIV, 2006, Boston,USA, 6384: 638401.[6]Patnaik R and Casasent D. MSTAR object classification andconfuser and clutter rejection using Minace Filters.Proceedings of SPIE-Automatic Target Recognition XVI,Orlando, Florida, April 2006, 6234: 62340S1.[7]Vijaya Kumar B V K. Tutorial survey of composite filterdesigns for optical correlators[J].Applied Optics.1992, 31(23):4773-4801[8]Mahalanobis A, Vijaya Kumar B V K, and Casasent D.Minimum average correlation energy filter[J].Applied Optics.1987, 26(17):3633-3640[9]Rsvichandran G and Casasent D. Minimum noise andcorrelation energy filter[J].Applied Optics.1992, 31(11):1823-1833[10]Isaacs J C, Foo S Y, and Bases A M. Novel kernels and kernelPCA for patten recognitoin. Proceedings of the IEEEInternational sumposium on Computational Intelligence inRobotics and Automation, FL, USA, June, 2007: 438-443.[11]Vijaya Kumar B V K and Xie C Y. Correlation patternrecognition for face recognition[J].Proc. IEEE.2006, 94(11):1963-1975[12] MSTAR Public Release Dataset, website: https:// www.sdms.afrl.af.mil/datasets/mstar/
  • 加载中
计量
  • 文章访问数:  3621
  • HTML全文浏览量:  92
  • PDF下载量:  1618
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-27
  • 修回日期:  2008-10-27
  • 刊出日期:  2009-05-19

目录

    /

    返回文章
    返回