[1] Radosavljevic P, de Baynast A, and Cavallaro J R.Optimized message passing schedules for LDPC decoding.Conference record of the 39th asilomar conference onsignals,systems and copmputers, California, 2005: 591-595. [2] Mao Y and Banihashemi A H. A new schedule for decodinglow-density parity-check codes. Global TelecommunicationsConference, USA, 2001, 47(2): 1007-1010. [3] Kschischang F R, Frey B J, and Loeliger H A. Factor graphsand the sum-product algorithm[J].IEEE Trans. on Info. Theory.2001, 47(2):498-519 [4] Zhang T and Fossorrier M. Shuffled belief propagationdecoding. The Proceedings 36th Asilomar Conference onSignal Systems and Computers, Pacific Grove, Grove, USA,2002: 8-15. [5] Zhao Chuan-gang, Yuan Jin-sheng, Lin Xue-hong, and LinJia-ru. Improvement of shuffled iterative decoding.Proceedings of 2006 IEEE Information Theory Workshop,Uruguay, 2006: 114-116. [6] Sharon E, Litsyn S, and Goldberger J. An efficient messagepassingschedule for LDPC decoding. Proc. 23rd IEEE Conv.,Israel, 2004: 223-226. [7] Sharon E, Litsyn S, and Goldberger J. Convergence analysisof serial message-passing schedules for LDPC decoding. The4th International Symposium on Turbo Codes, Munich, 2006:110-116. [8] 雷菁, 文磊, 唐朝京. 基于变量结点串行消息传递的LDPC 码译码研究. 国防科技大学学报, 2006, 28(5): 52-57. [9] Fossorier M P C. Quasi-cyclic low-density parity-check codesfrom circulant permutation matrices[J].IEEE Trans. on Info.Theory.2004, 50(8):1788-1793 [10] Xu Jun, Chen Lei, Lan Lan, and Lin Shu. Constuction of lowdensityparity-check codes by superposition. IEEE Trans. onInf. Theory, 2005, 53(2): 243-251. [11] Li Zongwang and Kumar B V K V. A class of good quasicycliclow-density parity check codes based on progressiveedge growth graph Conference record of the 38th asilomarconference on signals, systems and copmputers, California,2004: 1990-1994. [12] Richardson T and Urbanke R L. The capacity of low-densitypatiry-check codes under message-passing decoding[J].IEEETrans. on Inf. Theory.2001, 47(1):599-618
|