毛峡, 陈斌, 朱刚, 等. 基于小波的2-D 分形布朗运动分析与合成[J]. 电子学报, 2003, 31(6): 825-828.Mao Xia, Chen Bing, and Zhu Gang, et al.. Analysis andsynthesis of two dimensional fractional Brownian motionbased on wavelet [J]. Acta Electronica Sinica, 2003, 31(6):825-828.[2]佘龙华, 沈林成, 常文森. 基于FBM 的分形地形模拟原理研究[J]. 宇航学报, 1999, 20(3): 21-24.She Long-hua, Shen Lin-cheng, and Chang Wen-sen.FBM-based fractal simulation of terrain [J]. Journal ofAstronautics, 1999, 20(3): 21-24.[3]Yokokohji Y.nullChaen S, and Yoshikawa T. Evaluation oftraversability of wheeled mobile robots on uneven terrains byfractal terrain model [J].. Proceedings of the IEEEInternational Conference on Robotics Automation.2004,:-[4]张朋, 黄金, 郭陈江, 等. DEM 数据在SAR图像模拟中的应用[J]. 弹箭与制导学报, 2007, 27(2): 347-350.Zhang Peng, Huang Jin, and Guo Chen-jiang, et al.. Thedisposing method of DEM for the simulation imaging ofSAR[J]. Journal of Projectiles, Rockets, Missiles andGuidance, 2007, 27(2): 347-350.[5]Mandelbrot B B and Van Ness H W. Fractional Brownianmotions, fractional noises and applications [J].SIAM Rev.1968, 10(4):422-437[6]陶闯, 林宗坚, 卢健. 分形地形模拟[J]. 计算机辅助设计与图形学学报, 1996, 8(3): 178-186.Tao Chuang, Lin Zong-jian, and Lu Jian. Fractal simulationof terrain surfaces [J]. Joural of CAD and Computer Graphics,1996, 8(3): 178-186.[7]彭仪普, 刘文熙. 分形地形模拟研究[J]. 长沙铁道学院学报,2001, 19(4): 95-98.Peng Yi-pu and Liu Wen-xi. Fractal Brownian motion andstudy on terrain simulation [J]. Journal of ChangshaRailwayuniversity, 2001, 19(4): 95-98.[8]李长英, 蔡兴泉. 基于中点移位和过程纹理的真实感地形生成 [J]. 山东科技大学学报, 2006, 25(1): 36-39.Li Chang-ying and Cai Xing-quan. Photorealistic Terraingeneration based on midpoint displacement and proceduraltexture[J]. Journal of Shandong University of Science andTechnology (Natural Science), 2006, 25(1): 36-39.[9]秦忠宝, 房亚东, 赵峰, 等. 用FBM 法生成山脉地形的真实感图形的方法[J]. 计算机工程与应用, 2004, 32: 33-36.Qin Zhong-bao, Fang Ya-dong, and Zhao Feng, et al..Building graphics of the three-dimension fractal terrains byusing fBm methods [J]. Computer Engineering andApplication, 2004, 32: 33-36.[10]Unser M and Blu T. Self-Similarity: Part Isplines andoperators [J].IEEE Trans. on Signal Processing.2007, 55(4):1352-1363[11]Blu T and Unser M. Self-similarity: part IIoptimalestimation of fractal processes [J].IEEE Trans. on SignalProcessing.2007, 55(4):1364-1378[12]Tirosh S, Van de Ville D, and Unser M. Polyharmonicsmoothing splines and the multi-dimensional Wiener filteringof fractal-like signals [J].IEEE Trans. on Image Processing.2006, 15(9):2616-2630[13]陆伟宏, 卢鹏飞. 基于小波分析的分形参数估计新方法[J].电子与信息学报.2005, 27(10):1527-1530浏览[14]Tewfik A H and Kim M. Correlation structure of the discretewavelet coefficients of fractional Brownian motion [J].IEEETrans. on Information Theory.1992, 38(2):904-909[15]胡英, 杨杰, 周越. 基于多尺度Wiener 滤波器的分形噪声滤波[J]. 电子学报, 2003, 31(4): 560-563.Hu Ying, Yang Jie, and Zhou Yue. Multiscale Wiener filter forthe estimation of signal embedded in 1/f noise [J]. ActaElectronica Sinica, 2003, 31(4): 560-563.[16]李旭涛, 曹汉强, 赵鸿燕. 分形布朗运动模型及其在地形分析中的应用[J]. 华中科技科技大学学报(自然科学版), 2003,31(5): 50-52.Li Xu-tao, Cao Han-qiang, and Zhao Hong-yan. The analysisof the model of fractal Brownian motion and its applicationsto terrain. Journal of Huangzhong University of Science andTechnology (Nature Science Edition), 2003, 31(5): 50-52.
|