高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脑-机接口中基于ERS/ERD的自适应空间滤波算法

吕俊 谢胜利 章晋龙

吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318. doi: 10.3724/SP.J.1146.2007.01462
引用本文: 吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318. doi: 10.3724/SP.J.1146.2007.01462
Lü Jun, Xie Sheng-li, Zhang Jin-long. Adaptive Spatial Filter Based on ERD/ERS for Brain-Computer Interfaces[J]. Journal of Electronics & Information Technology, 2009, 31(2): 314-318. doi: 10.3724/SP.J.1146.2007.01462
Citation: Lü Jun, Xie Sheng-li, Zhang Jin-long. Adaptive Spatial Filter Based on ERD/ERS for Brain-Computer Interfaces[J]. Journal of Electronics & Information Technology, 2009, 31(2): 314-318. doi: 10.3724/SP.J.1146.2007.01462

脑-机接口中基于ERS/ERD的自适应空间滤波算法

doi: 10.3724/SP.J.1146.2007.01462
基金项目: 

国家自然科学基金重点项目(U0635001)和国家自然科学基金项目(60505005,60774094)资助课题

Adaptive Spatial Filter Based on ERD/ERS for Brain-Computer Interfaces

  • 摘要: 在与运动相关的脑-机接口(Brain-Computer Interface, BCI)研究中,如果样本规模小,共同空间模式(Common Spatial Patterns, CSP)滤波算法对离群点(可能为噪声)敏感,鲁棒性不好。为此该文提出自适应空间滤波(Adaptive Spatial Filter, ASF)算法,抽取滤波后脑电信号的方差作为特征,并寻找最优滤波器使两类特征中心的比值最大。与CSP不同,ASF是迭代算法,具有软判决机制,能够依据历代更新后的滤波器,自适应地降低离群点对各类特征中心计算带来的影响。采用BCI competition 2003和2005中两套数据集进行实验,结果表明:尤其是在训练样本少的情况下,相对于CSP,ASF所提取的特征分类效果更好。
  • Lemm S, Schafer C, and Curio G. BCI competition 2003-dataset III: Probabilistic modeling of sensorimotor rhythms forclassification of imaginary hand movements [J].IEEE Trans.on Biomedical Engineering.2004, 51(6):1077-1080[2]Li Y Q and Guan C T. A semi-supervised SVM learningalgorithm for joint feature extraction and classification inbrain computer interfaces [C]. The 28th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety, New York, USA, Aug.30-Sep.3, 2006: 2570-2573.[3]Lemm S, Blankertz B, and Curio G, et al.. Spatio-spectralfilters for improving the classification of single trial EEG [J].IEEE Trans. on Biomedical Engineering.2005, 52(9):1541-1548[4]McFarland D J, Anderson C W, and Mller K R, et al.. BCImeeting 2005-workshop on BCI signal processing: Featureextraction and translation [J].IEEE Trans. on Neural andRehabilitation Systems Engineering.2006, 14(2):135-138[5]Hammon P S and deSa V R. Preprocessing and metaclassification for brain- computer interfaces [J].IEEE Trans.on Biomedical Engineering.2007, 54(3):518-525[6]Wang Y J, Zhang Z G, and Li Y, et al.. BCI competition2003-data set IV: An algorithm based in CSSD and FDA forclassifying single-trial EEG [J]. IEEE Trans. on BiomedicalEngineering, 2004, 51(6): 1081-1086.[7]Liao X, Yao D Z, and Wu D, et al.. Combining spatial filtersfor the classification of single-trial EEG in a finger movementtask [J].IEEE Trans. on Biomedical Engineering.2007, 54(5):821-831[8]Friedman J, Hastie T, and Tibshirani R. Additive logisticregression: A statistical view of boosting [J]. The Annals ofStatistics, 2000, 28(2): 337-407.[9]Blankertz B, Mller K R, and Curio G, et al.. The BCIcompetition 2003: Progress and perspectives in detection anddiscrimination of EEG single trials [J].IEEE Trans. onBiomedical Engineering.2004, 51(6):1044-1051[10]Wei Q G, Gao X G, and Gao S K. Feature extraction andsubset selection for classifying single-trial ECoG duringmotor imagery [C]. The 28th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety, New York, USA, Aug.30-Sep.3, 2006: 1589-1592.[11]Atkeson C G, Moore A W, and Schaal S. Locally weightedlearning [J].Artificial Intelligence Review.1997, 11(15):11-73[12]Yang J and Yang J Y. Why can LDA be performed in PCAtransformed space [J].Pattern Recognition.2003, 36(12):563-566[13]Sun Y J. Iterative RELIEF for feature weighting: algorithms,theories, and applications [J].IEEE Trans. on PatternAnalysis and Machine Intelligence.2007, 29(6):1035-1051
  • 加载中
计量
  • 文章访问数:  3901
  • HTML全文浏览量:  96
  • PDF下载量:  1629
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-09-13
  • 修回日期:  2008-04-08
  • 刊出日期:  2009-02-19

目录

    /

    返回文章
    返回