Lemm S, Schafer C, and Curio G. BCI competition 2003-dataset III: Probabilistic modeling of sensorimotor rhythms forclassification of imaginary hand movements [J].IEEE Trans.on Biomedical Engineering.2004, 51(6):1077-1080[2]Li Y Q and Guan C T. A semi-supervised SVM learningalgorithm for joint feature extraction and classification inbrain computer interfaces [C]. The 28th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety, New York, USA, Aug.30-Sep.3, 2006: 2570-2573.[3]Lemm S, Blankertz B, and Curio G, et al.. Spatio-spectralfilters for improving the classification of single trial EEG [J].IEEE Trans. on Biomedical Engineering.2005, 52(9):1541-1548[4]McFarland D J, Anderson C W, and Mller K R, et al.. BCImeeting 2005-workshop on BCI signal processing: Featureextraction and translation [J].IEEE Trans. on Neural andRehabilitation Systems Engineering.2006, 14(2):135-138[5]Hammon P S and deSa V R. Preprocessing and metaclassification for brain- computer interfaces [J].IEEE Trans.on Biomedical Engineering.2007, 54(3):518-525[6]Wang Y J, Zhang Z G, and Li Y, et al.. BCI competition2003-data set IV: An algorithm based in CSSD and FDA forclassifying single-trial EEG [J]. IEEE Trans. on BiomedicalEngineering, 2004, 51(6): 1081-1086.[7]Liao X, Yao D Z, and Wu D, et al.. Combining spatial filtersfor the classification of single-trial EEG in a finger movementtask [J].IEEE Trans. on Biomedical Engineering.2007, 54(5):821-831[8]Friedman J, Hastie T, and Tibshirani R. Additive logisticregression: A statistical view of boosting [J]. The Annals ofStatistics, 2000, 28(2): 337-407.[9]Blankertz B, Mller K R, and Curio G, et al.. The BCIcompetition 2003: Progress and perspectives in detection anddiscrimination of EEG single trials [J].IEEE Trans. onBiomedical Engineering.2004, 51(6):1044-1051[10]Wei Q G, Gao X G, and Gao S K. Feature extraction andsubset selection for classifying single-trial ECoG duringmotor imagery [C]. The 28th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety, New York, USA, Aug.30-Sep.3, 2006: 1589-1592.[11]Atkeson C G, Moore A W, and Schaal S. Locally weightedlearning [J].Artificial Intelligence Review.1997, 11(15):11-73[12]Yang J and Yang J Y. Why can LDA be performed in PCAtransformed space [J].Pattern Recognition.2003, 36(12):563-566[13]Sun Y J. Iterative RELIEF for feature weighting: algorithms,theories, and applications [J].IEEE Trans. on PatternAnalysis and Machine Intelligence.2007, 29(6):1035-1051
|