Turk M and Pentland A. Eigenfaces for recognition. Journalof Cognitive Neuroscience, 1991, 3(1): 72-86.[2]Belhumeur P N, Hespanha J P, and Kriegman D J.Eigenfaces vs. fisherfaces: Recognition using class specificlinear projection. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1997, 19(7): 711-720.[3]Bengio Y, Palement J, and Vincent P, et al.. Out-of-sampleextensions for LLE, Isomap, MOS, eigenmaps, and spectralclustering. Advances in Neural Information ProcessingSystems 6. Cambridge, MA: MIT Press, 2003: 177.[4]Roweis S T and Saul L K. Nonlinear dimensionality reductionby locally linear embedding[J].Science.2000, 290(5500):2323-2326[5]Belkin M and Niyogi P. Laplacian eigenmaps and spectraltechniques for embedding and clustering. Advances in NeuralInformation Processing Systems 14, Vancouver: MIT Press,2001: 585-591.[6]Yang M H, Ahuja N, and Kriegman D. Face recognition usingkernel Eigenfaces. Proceedings of International Conference onImage Processing, Vancouver, Canada, September 2000:37-40.[7]Scholkopf B, Smola A, and Muller K R. Nonlinear componentanalysis as a kernel eigenvalues problem[J].Neural Computation.1998, 10(5):1299-1319[8]He Xiaofei and Yan Shuicheng, et al.. Face recognition usinglaplacianfaces[J].IEEE Trans. on Pattern Analysis and MachineIntelligence.2005, 27(3):328-340[9]Deng Cai, He Xiaofei, and Han Lianwei, et al.. OrthogonalLaplacianfaces for face recognition. IEEE Trans. on ImageProcessing, 2006, 15(11): 3608-3614.[10]Cheng J, Liu Q S, and Lu H Q, et al.. Supervised kernellocality preserving projections for face recognition[J].Neurocomputing Letter.2005, 67:443-449[11]祝磊, 朱善安. KSLPP:新的人脸识别算法. 浙江大学学报(工学版), 2007, 41(41): 1066-1069.[12]万海平. 模式识别中核方法若干问题研究. [博士论文], 北京邮电大学, 2005.
|