高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机的欠定盲分离

李荣华 杨祖元 赵敏 谢胜利

李荣华, 杨祖元, 赵敏, 谢胜利. 基于支持向量机的欠定盲分离[J]. 电子与信息学报, 2009, 31(2): 319-322. doi: 10.3724/SP.J.1146.2007.01370
引用本文: 李荣华, 杨祖元, 赵敏, 谢胜利. 基于支持向量机的欠定盲分离[J]. 电子与信息学报, 2009, 31(2): 319-322. doi: 10.3724/SP.J.1146.2007.01370
Li Rong-hua, Yang Zu-yuan, Zhao Min, Xie Sheng-li. SVM Based Underdetermined Blind Source Separation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 319-322. doi: 10.3724/SP.J.1146.2007.01370
Citation: Li Rong-hua, Yang Zu-yuan, Zhao Min, Xie Sheng-li. SVM Based Underdetermined Blind Source Separation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 319-322. doi: 10.3724/SP.J.1146.2007.01370

基于支持向量机的欠定盲分离

doi: 10.3724/SP.J.1146.2007.01370
基金项目: 

国家自然科学基金重点项目(U0635001)和国家自然科学基金(60505005,60674033)资助课题

SVM Based Underdetermined Blind Source Separation

  • 摘要: 该文提出了信号稀疏性的新度量方式,在估算出有效源信号的个数后,提取源信号到达方向角度的特征作为训练样本,利用支持向量机理论构造分类超平面,从而实现对观测信号的最优分类。采用加权系数法获得每一类信号的聚类中心,其中对系数权重的学习是自适应的,同时避免了K-均值聚类等方法对初值的敏感性。此外,针对大规模样本点,该文还提供了在线算法。仿真效果说明了此方法的稳定性和鲁棒性。
  • Comon P. Independent component analysis: A new concept[J].Signal Processing.1994, 36(3):287-314[2]Xie S L, He Z S, and Fu Y L. A note on Stone's conjecture ofblind signal separation [J].Neural Computation.2005, 17(2):321-330[3]Bofill P and Zibulevsky M. Underdetermined blind sourceseparation using sparse representations [J].Signal Processing.2001, 81(11):2353-2362[4]Li Y Q丆 Cichocki A, and Amari S. Analysis of sparserepresentation and blind source separation [J]. NeuralComputation, 2004, 16(6): 1193-1234.[5]Li Y Q, Amari S, and Cichocki A, et al.. Underdeterminedblind source separation based on sparse representations [J].IEEE Trans. on Signal Processing.2006, 54(2):423-437[6]Michael S L and Terrence J S. Learning overcompleterepresentations [J].Neural Computation.2000, 12(2):337-365[7]He Z S and Cichocki A. K-EVD clustering and itsapplications to sparse component analysis [C]. IndependentComponent Analysis and Blind Signal Processing, Charleston,SC, USA, Mar. 5-8, 2006: 90-97.[8]Vapnik V. The Nature of Statistical Learning Theory [M].New York, Spring Verlag, 1995: 30-105.[9]Platt J C. Sequential minimal optimization ...A fastalgorithm for training support vector machines [C]. In:SchOlkopf B, Burges C J C, and Smola A J. (Eds.):Advances in Kernel Methods-Support Vector Learning.MIT Press, Cambridge, MA, 1998: 185-208.[10]Xie S L, He Z S, and Gao Y. Adaptive Theory of SignalProcessing [M]. 1st ed, Beijing, Chinese Science Press, 2006:103-129.[11]Burges C. A tutorial on support vector machines for patternrecognition [J].Data Mining and Knowledge Discovery.1998,2(2):121-167[12]Ana C L and Carvalho C P L F. Comparing techniques formulticlass classification using binary SVM predictors [C].International Conference on Artificial Intelligence, MexicoCity, Mexico, April 26-30, 2004: 272-281.
  • 加载中
计量
  • 文章访问数:  3085
  • HTML全文浏览量:  79
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-28
  • 修回日期:  2008-04-04
  • 刊出日期:  2009-02-19

目录

    /

    返回文章
    返回