Comon P. Independent component analysis: A new concept[J].Signal Processing.1994, 36(3):287-314[2]Xie S L, He Z S, and Fu Y L. A note on Stone's conjecture ofblind signal separation [J].Neural Computation.2005, 17(2):321-330[3]Bofill P and Zibulevsky M. Underdetermined blind sourceseparation using sparse representations [J].Signal Processing.2001, 81(11):2353-2362[4]Li Y Q丆 Cichocki A, and Amari S. Analysis of sparserepresentation and blind source separation [J]. NeuralComputation, 2004, 16(6): 1193-1234.[5]Li Y Q, Amari S, and Cichocki A, et al.. Underdeterminedblind source separation based on sparse representations [J].IEEE Trans. on Signal Processing.2006, 54(2):423-437[6]Michael S L and Terrence J S. Learning overcompleterepresentations [J].Neural Computation.2000, 12(2):337-365[7]He Z S and Cichocki A. K-EVD clustering and itsapplications to sparse component analysis [C]. IndependentComponent Analysis and Blind Signal Processing, Charleston,SC, USA, Mar. 5-8, 2006: 90-97.[8]Vapnik V. The Nature of Statistical Learning Theory [M].New York, Spring Verlag, 1995: 30-105.[9]Platt J C. Sequential minimal optimization ...A fastalgorithm for training support vector machines [C]. In:SchOlkopf B, Burges C J C, and Smola A J. (Eds.):Advances in Kernel Methods-Support Vector Learning.MIT Press, Cambridge, MA, 1998: 185-208.[10]Xie S L, He Z S, and Gao Y. Adaptive Theory of SignalProcessing [M]. 1st ed, Beijing, Chinese Science Press, 2006:103-129.[11]Burges C. A tutorial on support vector machines for patternrecognition [J].Data Mining and Knowledge Discovery.1998,2(2):121-167[12]Ana C L and Carvalho C P L F. Comparing techniques formulticlass classification using binary SVM predictors [C].International Conference on Artificial Intelligence, MexicoCity, Mexico, April 26-30, 2004: 272-281.
|