高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂情形下目标跟踪的自适应粒子滤波算法

姚红革 齐华 郝重阳

姚红革, 齐华, 郝重阳. 复杂情形下目标跟踪的自适应粒子滤波算法[J]. 电子与信息学报, 2009, 31(2): 275-278. doi: 10.3724/SP.J.1146.2007.01272
引用本文: 姚红革, 齐华, 郝重阳. 复杂情形下目标跟踪的自适应粒子滤波算法[J]. 电子与信息学报, 2009, 31(2): 275-278. doi: 10.3724/SP.J.1146.2007.01272
Yao Hong-ge, Qi Hua, Hao Chong-yang. Visual Target Tracking Based on the Adaptive Particle Filter in the Complex Situation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 275-278. doi: 10.3724/SP.J.1146.2007.01272
Citation: Yao Hong-ge, Qi Hua, Hao Chong-yang. Visual Target Tracking Based on the Adaptive Particle Filter in the Complex Situation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 275-278. doi: 10.3724/SP.J.1146.2007.01272

复杂情形下目标跟踪的自适应粒子滤波算法

doi: 10.3724/SP.J.1146.2007.01272
基金项目: 

国家博士点基金(20040699015)资助课题

Visual Target Tracking Based on the Adaptive Particle Filter in the Complex Situation

  • 摘要: 该文提出一种自适应粒子滤波算法。首先建立目标的颜色模型,提出基于加权颜色分布图的目标颜色模型。采用该模型计算目标模板与粒子区域的相似程度,以此作为对目标物体定位的依据,使目标定位更加合理有效;进而在滤波过程中,针对粒子退化问题,提出基于mean-shift迭代的粒子重抽样方法,形成对抽样粒子集的自适应调节,提高了粒子质量,有效降低了粒子数量。最后,进行了对大机动快速运动的小目标和被严重遮挡目标的跟踪实验,结果表明该算法具有较强的鲁棒性。
  • Kwok C, Fox D, and Meila M. Real-time particle filters [J].Proce. IEEE.2004, 92(3):469-484[2]Arulampalam S, Maskell S, Gordon N J, and Clapp T. Atutorial on particle filters for on-line non-linear/non-gaussianbayesian tracking[J].IEEE Trans. on Signal Processing.2002,50(2):174-188[3]Yoshinori Satoh, Takayuki Okatani, and Koichiro Deguchi. Acolor-based tracking by kalman particle filter [C]. IEEEProceedings of the 17th International Conference on PatternRecognition. Cambridge, United Kingdom. 2004: 502-505.[4]Zhou S K, Chellappa R, and Moghaddam B. Visual trackingand Recognition using appearance-adaptive models inparticle filters [J].IEEE Trans. on Image Processing.2004, 13(11):1491-1506[5]Koichiro Deguchi, Oki Kawanaka, and Takayuki Okatani.Object tracking by the mean-shift of regional colordistribution combined with the particle-filter algorithm [C].Proceedings of the 17th International Conference on PatternRecognition. Cambridge, United Kingdom, 2004: 506-509.[6]Jia J P, Wang Q, and Chai Y M. Object tracking by multidegreesof freedom mean shift procedure combined with theKalman particle filter algorithm [C]. Proceedings of the 2006International Conference on Machine Learning andCybernetics. Dalian, China, 2006: 3793-3797.[7]Kailath T. The Divergence, Bhattacharyya distance measuresin signal selection [J]. IEEE Trans. on Comm. Technology,1999, 15(2): 253-259.[8]Comaniciu D and Meer P. Mean shift: A robust applicationtoward feature space analysis [J].IEEE Trans. on PatternAnalysis and Machine Intelligence.2002, 24(5):603-619[9]Comaniciu D and Meer P. Kernel-based object tracking [J].IEEE Trans. on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577
  • 加载中
计量
  • 文章访问数:  3573
  • HTML全文浏览量:  93
  • PDF下载量:  1588
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-08-03
  • 修回日期:  2008-03-17
  • 刊出日期:  2009-02-19

目录

    /

    返回文章
    返回