高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多流三音素DBN模型的音视频语音识别和音素切分

吕国云 蒋冬梅 樊养余 赵荣椿 H.Sahli W.Verhelst

吕国云, 蒋冬梅, 樊养余, 赵荣椿, H.Sahli, W.Verhelst. 基于多流三音素DBN模型的音视频语音识别和音素切分[J]. 电子与信息学报, 2009, 31(2): 297-301. doi: 10.3724/SP.J.1146.2007.01216
引用本文: 吕国云, 蒋冬梅, 樊养余, 赵荣椿, H.Sahli, W.Verhelst. 基于多流三音素DBN模型的音视频语音识别和音素切分[J]. 电子与信息学报, 2009, 31(2): 297-301. doi: 10.3724/SP.J.1146.2007.01216
Lü Guo-yun, Jiang Dong-mei, Fan Yang-yu, Zhao Rong-chun, H. Sahli, W. Verhelst. DBN Model Based Multi-stream Asynchrony Triphone for Audio-Visual Speech Recognition and Phone Segmentation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 297-301. doi: 10.3724/SP.J.1146.2007.01216
Citation: Lü Guo-yun, Jiang Dong-mei, Fan Yang-yu, Zhao Rong-chun, H. Sahli, W. Verhelst. DBN Model Based Multi-stream Asynchrony Triphone for Audio-Visual Speech Recognition and Phone Segmentation[J]. Journal of Electronics & Information Technology, 2009, 31(2): 297-301. doi: 10.3724/SP.J.1146.2007.01216

基于多流三音素DBN模型的音视频语音识别和音素切分

doi: 10.3724/SP.J.1146.2007.01216
基金项目: 

中国博士后科学基金和中国科技部与比利时弗拉芒大区科技合作项目([2004]487)资助课题

DBN Model Based Multi-stream Asynchrony Triphone for Audio-Visual Speech Recognition and Phone Segmentation

  • 摘要: 为实现音视频语音识别和同时对音频视频流进行准确的音素切分,该文提出一个新的多流异步三音素动态贝叶斯网络(MM-ADBN-TRI)模型,在词级别上描述了音频视频流的异步性,音频流和视频流都采用了词-三音素-状态-观测向量的层次结构,识别基元是三音素,描述了连续语音中的协同发音现象。实验结果表明:该模型在音视频语音识别和对音频视频流的音素切分方面,以及在确定音视频流的异步关系上,都具备较好的性能。
  • Potamianos G and Neti C, et al.. Recent advances in theautomatic recognition of audiovisual speech[J].Proc. IEEE.2003, 91(9):1306-1326[2]王志明, 蔡莲红, 艾海舟. 基于数据驱动方法的汉语文本-可视语音合成. 软件学报, 2005, 16(6): 1054-1063.Wang Z M, Cai L H, and Ai H Z. Text-to-visual speech inChinese based on data-driven approach. Journal of Software,2005, 16(6): 1054-1063.[3]Nefian A, Liang L, and Pi X, et al.. Dynamic Bayesiannetworks for audio-visual speech recognition[J].EURASIP,Journal on Applied Signal Processing.2002, 2002(11):1274-1288[4]Ravyse Ilse, Jiang D M, and Jiang X Y, et al.. DBN basedmodels for audio-visual speech analysis and recognition. 2006Pacific-Rim Conference on Multimedia (PCM 2006),Hangzhou, China, Nov, 2006: 19-30.[5]L Guoyun, Jiang Dongmei, and Sahli H, et al.. A novel DBNmodel for large vocabulary continuous speech recognition andphone segmentation. International Conference on ArtificialIntelligence and Pattern Recognition (AIPR-07), Orlando,Florida, USA, July 2007: 397-402.[6]Bilmes J and Bartels C. Graphical model architectures forspeech recognition. IEEE Signal Processing Magazine, 2005,22(5): 89-100.[7]L Guoyun, Jiang Dongmei, and Zhao Rongchun, et al..Multi-stream asynchrony Dynamic Bayesian Network modelfor audio-visual continuous speech recognition. 14thInternational Conference on systems, Signals and ImageProcessing (IWSSIP 2007), Maribor, Slovenia, June, 2007,1: 437-440.[8]Young S J, Odell J, and Woodland P C. Tree-based statetying for high accuracy acoustic modeling. In ProceedingsARPA Workshop on Human Language Technology,Plainsboro, New Jersey, USA, 1994: 307-312.[9]Zhou Yi, Gu Lie, and Zhang Hongjiang. Bayesian tangentshape model: Estimating shape and pose parameters viabayesian inference. The IEEE Conference on ComputerVision and Pattern Recognition, Wisconsin, USA, June, 2003,1: 109-116.[10]Jiang D M, Xie L, and Zhao R C, et al.. Acoustic visememodeling for speech driven animation: a case study. In Proc.1st IEEE Benelux Workshop on Model based Processing andcoding of Audio (MPCA-2002), Leuven, Belgium, November,2002, 1: 49-52.
  • 加载中
计量
  • 文章访问数:  4093
  • HTML全文浏览量:  125
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-07-23
  • 修回日期:  2008-12-11
  • 刊出日期:  2009-02-19

目录

    /

    返回文章
    返回