Song T L and Speyer J L. A stochastic analysis of a modifiedgain extended Kalman filter with application to estimationwith bearings-only measurements. IEEE Trans. on AutomaticControl, 1985, AC-30(10): 940-949.[2]郭福成, 李宗化, 孙仲康. 无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J].电子与信息学报.2004, 26(6):917-922浏览[3]Ristic B, Arulampalam S, and Gordon N. Beyond theKalman Filter: Particle Filters for Tracking Applications.Boston, London: Artech House, 2004, Chapter 5-12.[4]Doucet A, de Freitas N, and Gordon N (Eds.). SequentialMonte Carlo Methods in Practice. New York: Springer,2001, Chapter 15-26.[5]Doucet A and Wang X D. Monte Carlo methods for signalprocessing: A review in the statistical signal processingcontext. IEEE Signal Processing Magazine, 2005, 22(6):152-170.[6]Gordon N, Salmond D, and Smith A. Novel approach tononlinear/non-Gaussian Bayesian state estimation[J].IEEProceedings on Radar and Signal Processing.1993, 140(2):107-113[7]Zhai Y and Yeary M. A new particle filter tracking algorithmfor DOA sensor system. Proc. of Instrumentation andMeasurement Technology, Warsaw, 2007: 1-4.[8]Bolic M, Athalye A, and Djuric P M, et al.. Algorithmicmodification of particle filters for hardware implementation.Proc. of the European Signal Processing. Conference, Vienna,Austria, 2004: 1641-1646.[9]Bolic M, Djuric P M, and Hong S. Resampling algorithms forparticle filters: A computational complexity perspective.EURASIP Journal of Applied Signal Processing, 2004, (15):2267-2277.[10]Athalye A, Bolic M, and Hong S, et al.. Generic hardwarearchitectures for sampling and resampling in particle filters.EURASIP Journal of Applied Signal Processing, 2005, (17):2888-2902.
|