高分辨率SAR图像机动目标纹理特征提取与分析
doi: 10.3724/SP.J.1146.2007.01059
Texture Feature Extraction and Analyses for Mobile Targets in High-Resolution SAR Imagery
-
摘要: 该文基于高频区目标散射中心理论分析了高分辨率SAR图像机动目标和自然地物后向散射特性的差异,探讨了两类目标纹理现象产生的机理,并在此基础上,分别基于局部统计量和分形模型提取机动目标的纹理特征,给出了鉴别特征优选方法。文中利用MSTAR的车辆目标实测数据检验了该文计算的纹理特征,给出纹理特征优选结果以及各纹理特征鉴别的性能,结果表明该文提取的纹理特征具有较好的鉴别性能,能消除大部分自然地物产生的虚警。Abstract: Based on the theory of scattering center, the difference of back-scattering characteristics between the mobile targets and natural terrains in high-resolution SAR imagery is investigated, and the principles of texture features of the two kind targets are discussed in this paper. And then, the texture features are extracted by using respectively the local statistics and fractal models, and the method of selecting the best features is presented. The real vehicle target SAR image data in MSTAR database are used to test the texture features, the best features are selected and the discriminating performances of those features are shown. The results show that those features are good and can be used to eliminate the most false alarms of natural terrains.
-
[1] Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images. Boston, London, Artech House, 1998:277-296. [2] Lee C P and Randolph L M. Attributed scattering centersfor SAR ATR[J].IEEE Trans. on Image Processing.1997,6(1):79-91 [3] Gan Du and Tat Soon Yeo. A novel lacunarity estimationmethod applied to SAR image segmentation[J].IEEE Trans.on Geoscience and Remote Sensing.2002, 40(12):2687-2691 [4] Kreithen D E, Halversen S D, and Owirka G J.Discriminating targets from clutter. Lincoln LaboratoryJournal, 1993, 6(1): 25-52. [5] Novak L M, Halversen S D, and Owirka G J, et al.. Effectsof polarization and resolution on SAR ATR[J].IEEE Trans.on Aerospace and Electronic Systems.1997, 33(1):102-116 [6] Zhang Cui, Zou Tao, and Wang Zhengzhi. A targetdiscrimination algorithm for high resolution SAR imagery.IEEE Proceeding of International Conference on Robotics,Intelligent Systems and Signal Processing, Changsha,China, 2003: 863-867. [7] Myint Soe Win and Lam Nina. A study of lacunarity-basedtexture analysis approaches to improve urban imageclassification[J].Computers, Environment and Urban Systems.2005, 29(5):501-523 [8] Dong P. Test of a new lacunarity estimation method forimage texture analysis. International Journal of RemoteSensing, 2000, 21(17): 3369-3373.
计量
- 文章访问数: 3689
- HTML全文浏览量: 77
- PDF下载量: 1139
- 被引次数: 0