高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种全变差正则化流场的图像抑噪方法

卢成武 宋国乡

卢成武, 宋国乡. 一种全变差正则化流场的图像抑噪方法[J]. 电子与信息学报, 2009, 31(1): 112-115. doi: 10.3724/SP.J.1146.2007.01039
引用本文: 卢成武, 宋国乡. 一种全变差正则化流场的图像抑噪方法[J]. 电子与信息学报, 2009, 31(1): 112-115. doi: 10.3724/SP.J.1146.2007.01039
Lu Cheng-wu, Song Guo-xiang. An Image Denoising Method Using Total Variation Regularization for Flow Field[J]. Journal of Electronics & Information Technology, 2009, 31(1): 112-115. doi: 10.3724/SP.J.1146.2007.01039
Citation: Lu Cheng-wu, Song Guo-xiang. An Image Denoising Method Using Total Variation Regularization for Flow Field[J]. Journal of Electronics & Information Technology, 2009, 31(1): 112-115. doi: 10.3724/SP.J.1146.2007.01039

一种全变差正则化流场的图像抑噪方法

doi: 10.3724/SP.J.1146.2007.01039
基金项目: 

国家自然科学基金(60473119)资助课题

An Image Denoising Method Using Total Variation Regularization for Flow Field

  • 摘要: 利用Meyer的图像分解理论,提出一种磨光流场的全变差正则化抑噪方法。该方法首先引入负指数Hilbert- Sobolev范数度量逼近项,对图像水平曲线的法向量场进行全变差正则化磨光,然后构造出一个曲面拟合模型,拟合磨光后的流场。最后,利用有限差分法对各模型所导出Euler-Lagrange方程进行数值求解。实验结果表明,该方法在有效去噪的同时,使边缘和纹理信息均得到较好的保持。
  • Acar R and Vogel C. Analysis of total variation penaltymethods [J].Inverse Problems.1994, 10(6):1217-1229[2]Chambolle A, DeVore R A, and Lee N Y, et al.. Nonlinearwavelet image processing: variational problems, compression,and noise removal through wavelet shrinkage [J].IEEETrans. on Image Processing.1998, 7(3):319-335[3]Chambolle A and Lions P L. Image recovery via totalvariation minimization and related problems[J]. NumerischeMathematik, 1997, 76(2): 167-188.[4]Vese L A and Osher S. Numerical methods for p-harmonicflows and applications to image processing [J].SIAM J.Numer. Anal.2002, 40(6):2085-2104[5]Osher S, Sole A, and Vese L A. Image decomposition andrestoration using total variation minimization and the e H.1norm [J]. Multiscale Modelling and Simulation, 2003, 1(3):1579-1590.[6]Osher S, Burger M, and Goldfarb D, et al.. An iterativeregularization method for total variation based imagerestoration [J].Multiscale Modelling and Simulation.2005, 4(2):460-489[7]Lysaker M, Osher S, and Tai X C. Noise removal usingsmoothed normal and surface fitting [J].IEEE Trans. onImage Processing.2004, 13(10):1345-1357[8]Rudin L I, Osher S, and Fatemi E. Nonlinear total variationbased noise removal algorithms [J].Phys. D.1992, 60(1-4):259-268[9]Meyer Y. Oscillating pattern in image processing andnonlinear evolution equations [M]. Boston: UniversityLecture Series, American Mathematical Society, 2001: 23-78.[10]Tasdizen T, Whitaker R, and Burchard P. Geometric surfaceprocessing via normal maps [J].ACM Trans. Graph.2003,22(4):1012-1033[11]Chan T, Marquina A, and Mulet P. High-order totalvariation-based image restoration [J].SIAM J. Sci. Compu.2000, 22(2):503-516[12]Besl P and Jain R. Segmentation through variable-ordersurface fitting [J].IEEE Trans. on Pattern Anal. MachineIntell.1988, 10(2):167-192
  • 加载中
计量
  • 文章访问数:  3166
  • HTML全文浏览量:  83
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-25
  • 修回日期:  2007-11-30
  • 刊出日期:  2009-01-19

目录

    /

    返回文章
    返回