高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机射线的概率分布及其应用

扈罗全 朱洪波 ChenYifan

扈罗全, 朱洪波, ChenYifan. 随机射线的概率分布及其应用[J]. 电子与信息学报, 2009, 31(6): 1405-1409. doi: 10.3724/SP.J.1146.2007.01018
引用本文: 扈罗全, 朱洪波, ChenYifan. 随机射线的概率分布及其应用[J]. 电子与信息学报, 2009, 31(6): 1405-1409. doi: 10.3724/SP.J.1146.2007.01018
Hu Luo-quan, Zhu Hong-bo, Chen Yifan. Probability Distribution of Stochastic Rays and Its Applications[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1405-1409. doi: 10.3724/SP.J.1146.2007.01018
Citation: Hu Luo-quan, Zhu Hong-bo, Chen Yifan. Probability Distribution of Stochastic Rays and Its Applications[J]. Journal of Electronics & Information Technology, 2009, 31(6): 1405-1409. doi: 10.3724/SP.J.1146.2007.01018

随机射线的概率分布及其应用

doi: 10.3724/SP.J.1146.2007.01018
基金项目: 

国家自然科学基金重点项目(60432040),国家自然科学基金(60572024),教育部新世纪优秀人才支持计划(NCET-04-0519),教育部博士点基金( 200509230031)和江苏出入境检验检疫局科研项目(2009KJ14)资助课题

Probability Distribution of Stochastic Rays and Its Applications

  • 摘要: 在使用随机射线方法建模无线传播信道时,需要求解以反射次数为指标的无线电波经过若干次反射以后达到特定位置的概率分布。该文使用信息论中的最大熵原理,首先计算在Manhattan距离度量下二维和三维空间连续情形和离散情形下随机射线的概率密度函数。然后计算在Euclid距离度量下二维和三维空间连续情形下随机射线的概率密度函数,以及作随机游动的随机射线在二维空间的概率密度函数。使用城市密集传播地区的测量数据验证随机射线理论模型结果的可靠性。所得结果对于无线随机传播信道建模具有理论指导意义。
  • Ullmo D and Baranger H U. Wireless propagation inbuildings: A statistical scattering approach[J].IEEETransactions on Vehicular Technology.1999, 48(3):947-955[2]Ishimaru A. Wave Propagation and Scattering in RandomMedia. NJ: Wiley-IEEE Press, 1999, Chap. 7.[3]Franceschetti G, Marano S, and Palmieri F. Propagationwithout wave equation, toward an urban area model[J].IEEETransactions on Antennas and Propagation.1999, 47(9):1393-1404[4]Brown M G and Viechnicki J. Stochastic ray theory forlong-range sound propagation in deep ocean environments[J].Journal of the Acoustical Society of America.1998, 104(4):2090-2104[5]Hu L and Zhu H. Bounded Brownian bridge model for UWBindoor multipath channel. IEEE International Symposium onMicrowave, Antenna, Propagation and EMC Technology forWireless Communication Proceedings, Beijing, China. 2005:1406-1409.[6]Molisch A F, Kuchar A, Laurila J, Hugl K, andSchmalenberger R. Geometry-based directional model formobile radio channels - principles and implementation.European Transactions on Telecommunications, 2003, 14(4):351-359.[7]扈罗全, 朱洪波. 随机桥方法产生相关时间序列及其应用研究. 通信学报, 2006, 27(7): 27-34.Hu L Q and Zhu H B. Stochastic bridge approach forgenerating correlated time series and its applications. Journalon Communications, 2006, 27(7): 27-34.[8]Marano S and Franceschetti M. Ray propagation in a randomlattice: A maximum entropy, anomalous diffusion process[J].IEEE Transactions on Antennas and Propagatation.2005,53(6):1888-1896[9]Cover T M and Thomas J A. Elements of Information Theory.NY: Wiley, 1991, Chap. 11.[10]Hu L Q, Yu H, and Chen Y. Path loss models based onstochastic rays[J].IET Microwave, Antennas and Propagation.2007, 1(3):602-608[11]张启仁. 统计力学. 北京: 科学出版社, 2004, 第10章.[12]王正斌, 扈罗全. 非波动方法分析二维无线信道的接收功率.应用科学学报, 2007, 25(3): 239-242.Wang Z B and Hu L Q. No-wave approaches to analyzingreceived power distribution in 2D wireless channels. Journalof Applied Science, 2007, 25(3): 239-242.[13]Rappaport T S. Wireless Communications Principles andPractice. New York: Prentice-Hall, 1996, Chap. 3.[14]Franceschetti M, Bruck J, and Schulman L. A random walkmodel of wave propagation[J].IEEE Transactions on Antennasand Propagation.2004, 52(5):1304-1317[15]Gradshteyn I S and Ryzhik I M. Table of Integrals, Series,and Products. 6th ed., A. Jeffrey, Ed. New York: Academic,2000: 365, 910.
  • 加载中
计量
  • 文章访问数:  2924
  • HTML全文浏览量:  99
  • PDF下载量:  640
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-22
  • 修回日期:  2009-04-05
  • 刊出日期:  2009-06-19

目录

    /

    返回文章
    返回