高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种稳健的混沌调频信号频率跟踪技术

徐茂格 宋耀良

徐茂格, 宋耀良. 一种稳健的混沌调频信号频率跟踪技术[J]. 电子与信息学报, 2009, 31(1): 104-107. doi: 10.3724/SP.J.1146.2007.00979
引用本文: 徐茂格, 宋耀良. 一种稳健的混沌调频信号频率跟踪技术[J]. 电子与信息学报, 2009, 31(1): 104-107. doi: 10.3724/SP.J.1146.2007.00979
Xu Mao-ge, Song Yao-liang. A Robust Frequency Tracking Technology for Chaotic Frequency Modulation[J]. Journal of Electronics & Information Technology, 2009, 31(1): 104-107. doi: 10.3724/SP.J.1146.2007.00979
Citation: Xu Mao-ge, Song Yao-liang. A Robust Frequency Tracking Technology for Chaotic Frequency Modulation[J]. Journal of Electronics & Information Technology, 2009, 31(1): 104-107. doi: 10.3724/SP.J.1146.2007.00979

一种稳健的混沌调频信号频率跟踪技术

doi: 10.3724/SP.J.1146.2007.00979

A Robust Frequency Tracking Technology for Chaotic Frequency Modulation

  • 摘要: 频率跟踪问题是一个复杂的非线性问题,混沌调频方式的引入更加大了频率跟踪的难度,传统的频率跟踪技术扩展卡尔曼滤波(EKF)已无法跟踪如此复杂的频率变化。为此,该文首先建立了频率跟踪问题的状态空间模型,在此基础上引入了新颖的粒子滤波技术,分析了该技术的可行性,推导了混沌调频信号频率跟踪的后验克拉美-罗(PCRB)下界,实验仿真验证了该技术的优越性。
  • Kennedy M P, Kolumban G, and Kis G, et al.. Performanceevaluation of FM-DCSK modulation in multipathenvironments [J]. IEEE Trans. on Circuits Systems - I, 2001,48(12): 1702-1717.[2]Callegari S, Rovatti R, and Setti G. Chaos-based FM signals:application and implementation issues [J]. IEEE Trans. onCircuits Systems-I, 2003, 8(50): 1141-1147.[3]Snyder D L. The State-Variable Approach to ContinuousEstimation with Applications to Analog CommunicationTheory [M]. Boston, MA: MIT Press, 1969: 129-135.[4]LA S B F and Robert B R. Design of an extended Kalmanfilter frequency tracker [J].IEEE Trans. on Signal Processing.1996, 44(3):739-742[5]Bittanti S and Savaresi S M. Frequency tracking viaextended Kalman filter: parameter designProceedings of theAmerican Control Conference, Chicago, IL, USA, 2000, 4:2225-2229.[6] Doucet A, Godsill S, and Andrieu C. On sequential MonteCarlo sampling methods for Bayesian filtering [J].. Statist.Comput.2000,10(3):197-208[6]Doucet A, Godsill S, and Andrieu C. Particle methods forchange detection, system identification, and control [J].Proc.of the IEEE.2004, 92(3):423-438[7]Amtlard P P, Brossier J M, and Moissan E. Phase tracking:what do we gain from optimality? Particle filtering versusphase-locked loops [J].Signal Processing.2003, 83(1):151-167[8]Fischler E and Bobrovsky B Z. Mean time to loose lock ofphase tracking by particle filtering [J].Signal Processing.2006, 86(1):3481-3485[9]Renate M and Nelson C. Bayesian reconstruction of chaoticdynamical systems [J].Physical Review E.2000, 62(3):3535-3542[10]徐茂格, 宋耀良, 刘力维. 基于修正扩展卡尔曼滤波和基于粒子滤波的混沌信号检测与跟踪 [J]. 南京理工大学学报, 2007,31(4): 514-517.[11]Peter T and Carlos M H. Posterior Cramer-Rao bounds fordiscrete time nonlinear filtering [J]. IEEE Trans. on SignalProcessing, 1998, 16(5): 1386-1396.
  • 加载中
计量
  • 文章访问数:  3419
  • HTML全文浏览量:  95
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-15
  • 修回日期:  2007-10-17
  • 刊出日期:  2009-01-19

目录

    /

    返回文章
    返回