高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

零极值目标函数系统辨识算法

毕云龙 来逢昌 刘鹏

毕云龙, 来逢昌, 刘鹏. 零极值目标函数系统辨识算法[J]. 电子与信息学报, 2008, 30(9): 2138-2142. doi: 10.3724/SP.J.1146.2007.00158
引用本文: 毕云龙, 来逢昌, 刘鹏. 零极值目标函数系统辨识算法[J]. 电子与信息学报, 2008, 30(9): 2138-2142. doi: 10.3724/SP.J.1146.2007.00158
Bi Yun-Long, Lai Feng-Chang, Liu Peng. A System Identification Algorithm by Minimizing the Zero-Minimum Target Function[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2138-2142. doi: 10.3724/SP.J.1146.2007.00158
Citation: Bi Yun-Long, Lai Feng-Chang, Liu Peng. A System Identification Algorithm by Minimizing the Zero-Minimum Target Function[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2138-2142. doi: 10.3724/SP.J.1146.2007.00158

零极值目标函数系统辨识算法

doi: 10.3724/SP.J.1146.2007.00158

A System Identification Algorithm by Minimizing the Zero-Minimum Target Function

  • 摘要: 该文提出一种零极值目标函数最小化系统辨识算法。目标函数为系统均方误差与系统噪声方差之差的平方,其极小值为零。在系统辨识过程中采用滑动平均法在线估计系统均方误差、输入自相关矩阵以及输入与期望响应的互相关向量。推导出自适应滤波器权值向量的更新表达式。算法的步长能够根据统计量自适应地调整,使得在得到较小稳态误差的同时提高算法收敛速度。分析了算法的稳定性,得到了算法收敛的条件。对比实验结果表明,该算法具有更快的收敛速度,更小的稳态误差以及更好的稳定性。
  • [1] 邹谋炎. 反卷积和信号复原. 2001 年3 月第1 版, 北京: 国防工业出版社, 2004: 1-10.Zou Mou-yan. Deconvolution and Signal Recovery. Mar. 2001first Edition, Beijing: National Defence Industry Press, 2004:1-10. [2] Simon Haykin. Adaptive Filter Theory. Fourth Edition,Beijing: Publishing House of Electronics Industry. 2002:Chapter 2-Chapter 5. [3] 覃景繁, 欧阳景正. 一种新的变步长自适应滤波算法. 数据采集与处理, 1997, 12(3): 171-174.Qin Jing-fan and Ouyang Jing-zheng. A novel variable stepLMS adaptive filtering algorithm based on Sigmoid function.Journal of Data Acquisition Processing, 1997, 12(3):171-174. [4] 罗小东, 贾振红, 王强. 一种新的变步长LMS 自适应滤波算法. 电子学报, 2006, 34(6): 1123-1126.Luo Xiao-dong, Jia Zhen-hong, and Wang Qiang. A newvariable step size LMS adaptive filtering algorithm. ActaElectronica Sinica, 2006, 34(6): 1123-1126. [5] Sanubari J. A new variable step size method for the LMSadaptive filter[J].The 2004 IEEE Asia-Pacific Conference onCircuit and System, Tainan, Taiwan.2004, 1:501-504 [6] 吕振肃, 黄石. 一种改进的变步长ELMS 算法[J].电子与信息学报.2005, 27(10):1524-1526浏览 [7] Yu Xiao and Wang Qicai. An extended LMS algorithm inANC. ICNNSP95, Nanjing, China, 1995: 737-740. [8] Mathews V John and Xie Zhenhua. A stochastic gradientadaptive filter with gradient adaptive step size[J].IEEE Trans.on Signal Processing.1993, 41(6):2075-2087 [9] Kripasagar Venkat and Issa M S Panahi. SIMO blind systemidentification and order determination. 2006 IEEEInternational Conference on Acoustic, Speech and SignalProcessing, Toulouse, France, 2006, 3: 121-124. [10] Jernimo Arenas-Garca, Anbal R Figueiras-Vidal, and AliH Sayed. Mean-square performance of a convex combinationof two adaptive filters[J].IEEE Trans. on Signal Processing.2006, 54(3):1078-1090 [11] Nikolay D Gaubitch, Md Kamrul Hasan, and Patrick ANaylor. Generalized optimal step-size for blind multichannelLMS system identification[J].IEEE Signal Processing Letters.2006, 13(10):624-627 [12] Se Bin Im and Hyung Jin Choi. Iterative channel estimationwith moving average filter in OFDM packet transmissionsystem. 2006 Asia-Pacific Conference on Communication,Busan, 2006: 1-5. [13] Gorniewicz L, Marano S A, and Slosarski M. Fixed points ofcontractive multivalued maps[J].Proceedings of the AmericanMathematical Society.1996, 124(9):2675-2683
  • 加载中
计量
  • 文章访问数:  3513
  • HTML全文浏览量:  84
  • PDF下载量:  772
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-25
  • 修回日期:  2007-07-23
  • 刊出日期:  2008-09-19

目录

    /

    返回文章
    返回