高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于尺度空间相关的SAR图像NeighShrink滤波算法

李恒超 洪文 吴一戎

李恒超, 洪文, 吴一戎. 基于尺度空间相关的SAR图像NeighShrink滤波算法[J]. 电子与信息学报, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054
引用本文: 李恒超, 洪文, 吴一戎. 基于尺度空间相关的SAR图像NeighShrink滤波算法[J]. 电子与信息学报, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054
Li Heng-chao, Hong Wen, Wu Yi-rong. NeighShrink Despeckling for SAR Images Based on Scale Space Correlation[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054
Citation: Li Heng-chao, Hong Wen, Wu Yi-rong. NeighShrink Despeckling for SAR Images Based on Scale Space Correlation[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1940-1943. doi: 10.3724/SP.J.1146.2007.00054

基于尺度空间相关的SAR图像NeighShrink滤波算法

doi: 10.3724/SP.J.1146.2007.00054

NeighShrink Despeckling for SAR Images Based on Scale Space Correlation

  • 摘要: 为有效滤除相干斑噪声和保持图像的结构信息,该文提出了基于尺度空间相关的SAR图像NeighShrink滤波算法。首先,利用所提出的单选择可调参数的尺度空间相关法,检测对数SAR图像经平稳小波变换所得细节子带中分别与噪声相关及与结构信息相关的小波系数。然后,对与噪声相关的小波系数,直接采用NeighShrink算法以获得较好的平滑效果;而对于与结构信息相关的小波系数,则提出加权的NeighShrink算法来达到结构信息保持的目的。仿真实验验证了该文算法的有效性。
  • Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images. Boston: Artech House, 1998, chapter 6:157-193.[2]Lee J S. Digital image enhancement and noise filtering by useof local statistics. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1980, 2(3): 992-1000.[3]Kuan D T, Sawchuk A A, Strand T C, and Chavel P.Adaptive restoration of images with speckle[J].IEEE Trans. onAcoustics, Speech, and Signal Processing.1987, 35(2):373-383[4]Frost V S, Stiles J A, Sanmugan K S, and Holtzman J C. Amodel for radar images and its application to adaptive digitalfiltering of multiplicative noise[J].IEEE Trans. on PatternAnalysis and Machine Intelligence.1982, 4(2):157-165[5]Lopes A, Nezry E, Touzi R, and Laur H. Maximum aposterior speckle filtering and first order texture models inSAR images. Proc. IGARSS90, Washington, D.C., USA,1990: 2409-2412.[6]Donoho D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage[J].Biometrika.1994, 81(5):425-455[7]Donoho D L and Johnstone I M. Adapting to unknownsmoothness via wavelet shrinkage[J].Journal of the AmericanStatistical Association.1995, 90(432):1200-1224[8]Thitimajshima P. SAR images speckle noise reduction bywavelet thresholding[J].Proc. IGARSS99, Hamburg, Germany.1999, (2):55-88[9]Cai T and Silverman B W. Incorporating information onneighboring coefficients into wavelet estimation. Sankhya:Indian Journal of Statistics, Series B, 2001, 63(2): 127-148.[10]Chen G Y, Bui T D, and Krzyzak A. Image denoising usingneighboring wavelet coefficients[J].Proc. ICASSP04, Montreal,Canada.2004, (2):917-920[11]Nanson G P and Silverman B W. Stationary wavelettransform and some statistical applications. Wavelet andStatistics, Lecture Notes in Statistics, Berlin: Springer-Verlag,1995: 281-299.[12]Xie H, Pierce L E, and Ulaby F T. Statistical properties oflogarithmically transformed speckle. IEEE Trans. onGeoscience and Remote Sensing, 2002, 40(3): 712-727.[13]Xu Y S, Weaver J B, Healy D M, and Lu J. Wavelettransform domain filters: a spatially selective noise filterationtechnique[J].IEEE Trans. on Image Processing.1994, 3(6):747-758[14]Simard M, DeGrandi G, Thomson K P B, and Benie G B.Analysis of speckle noise contribution on waveletdecomposition of SAR images[J].IEEE Trans. on Geoscienceand Remote Sensing.1998, 36(6):1953-1962[15]Touzi R. A review of speckle filtering in the context ofestimation theory[J].IEEE Trans. on Geoscience and RemoteSensing.2002, 40(11):2392-2404[16]Guo H.[J].Odegard J E, Lang M, Gopinath R A, Selesnick I W,and Burrus C S. Wavelet based speckle reduction withapplication to SAR based ATD/R. Proc. ICIP94, Austin,USA.1994,:-[17]Achim A, Tsakalides P, and Bezerianos A. SAR imagedenoising via Bayesian wavelet shrinkage based onheavy-tailed model[J].IEEE Trans. on Geoscience and RemoteSensing.2003, 41(8):1773-1784
  • 加载中
计量
  • 文章访问数:  3367
  • HTML全文浏览量:  69
  • PDF下载量:  916
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-09
  • 修回日期:  2008-01-16
  • 刊出日期:  2008-08-19

目录

    /

    返回文章
    返回