高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于熵图像和隶属度图的高斯混合背景模型

左军毅 梁彦 赵春晖 潘泉 程咏梅 张洪才

左军毅, 梁彦, 赵春晖, 潘泉, 程咏梅, 张洪才. 基于熵图像和隶属度图的高斯混合背景模型[J]. 电子与信息学报, 2008, 30(8): 1918-1922. doi: 10.3724/SP.J.1146.2007.00049
引用本文: 左军毅, 梁彦, 赵春晖, 潘泉, 程咏梅, 张洪才. 基于熵图像和隶属度图的高斯混合背景模型[J]. 电子与信息学报, 2008, 30(8): 1918-1922. doi: 10.3724/SP.J.1146.2007.00049
Zuo Jun-yi, Liang Yan, Zhao Chun-hui, Pan Quan, Cheng Yong-mei, Zhang Hong-cai. Gaussian Mixture Background Model Based on Entropy Image and Membership-Degree-Image[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1918-1922. doi: 10.3724/SP.J.1146.2007.00049
Citation: Zuo Jun-yi, Liang Yan, Zhao Chun-hui, Pan Quan, Cheng Yong-mei, Zhang Hong-cai. Gaussian Mixture Background Model Based on Entropy Image and Membership-Degree-Image[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1918-1922. doi: 10.3724/SP.J.1146.2007.00049

基于熵图像和隶属度图的高斯混合背景模型

doi: 10.3724/SP.J.1146.2007.00049
基金项目: 

国家自然科学基金重点项目(60634030)和国家自然科学基金(60372085)资助课题

Gaussian Mixture Background Model Based on Entropy Image and Membership-Degree-Image

  • 摘要: 经典的高斯混合背景模型中,高斯分量的个数是固定的,近邻像素间的相关性也没有被考虑。作为对这种模型的改进,该文利用熵图像来度量背景像素亮度分布的复杂程度,进而给出了根据熵图像为各像素选择高斯函数个数的方法,在保证检测精度的前提下节约计算资源;并利用隶属度来表示像素属于背景的可能性,通过融合各像素邻域的局部信息来对其进行有效的分类,使得分类决策的结果更可靠,而计算量却增加不多。多种真实场景下的实验证明了这种算法在计算速度和精度上的良好性能。
  • Friedman N and Russell S. Image segmentation in videosequences: probabilistic approach. Proceeding of ThirteenthConference on Uncertainty in Artificial intelligence,Providence, Rhode Island, USA, August, 1997: 175-182.[2]Wern C R, Azarbaycjani A, and Darrell T. Pfinder : Realtime tracking of human body[J].IEEE Trans. on PatternAnalysis and Machine Intelligence.1997, 19(7):780-785[3]Stauffer C and Grimson W. Learning patterns of activityusing real-time tracking[J].IEEE Trans. on Pattern Analysisand Machine Intelligence.2000, 22(8):747-757[4]Han B, Comaniciu D, and Davis L. Sequential kernel densityapproximation through mode propagation: applications tobackground modeling. Proceeding of Asian ConferenceComputer Vision, Jeju Island, Korea, 2004.[5]Zivkovic Z. Improved adaptive Gaussian mixture model forbackground subtraction. Proceeding of the 17th InternationalConference on Pattern Recognition, Cambridge UK, August,2004: 28-31.[6]Zivkovic Z and Heijden F. Recursive unsupervised learning offinite mixture models. IEEE Trans. on Pattern Analysis andMachine Intelligence. 2004, 26(5): 651-656.[7]Sheikh Y and Shah M. Bayesian modeling of dynamic scenesfor object detection[J].IEEE Trans. on Pattern Analysis andMachine Intelligence.2005, 27(11):1778-1792[8]Parag T, Elgammal A, and Mittal A. A framework for featureselection for background subtraction. IEEE Conference onComputer Vision and Pattern Recognition, New York, 2006:1916-1923.[9]Power P W and Schoonees J A. Understanding backgroundmixture models for foreground segmentation. Proceedings ofImage and Vision Computing, New Zealand, 2002: 267-271.[10]Porikli F. Achieving real-time object detection and trackingunder extreme conditions[J].Journal of Real-Time ImageProcessing.2006, 1(1):33-40
  • 加载中
计量
  • 文章访问数:  3440
  • HTML全文浏览量:  104
  • PDF下载量:  1225
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-01-09
  • 修回日期:  2007-06-18
  • 刊出日期:  2008-08-19

目录

    /

    返回文章
    返回