一种基于主分量分析的SAR图像变化检测算法
doi: 10.3724/SP.J.1146.2006.01997
SAR Image Change Detection Algorithm Based on Principal Component Analysis
-
摘要: 该文提出一种基于主分量分析(PCA)的SAR图像变化检测算法。该算法将SAR图像转化为列向量,对两个图像向量组成的矩阵进行主分量分解,其图像的变化部分则表征为矩阵的次分量成分。论文还研究了高效的SAR图像变化检测实现算法,最后通过与对数比方法和分块主分量分析法进行比较实验,实验结果证实了方法的有效性。Abstract: This paper presents an algorithm about SAR image change detection based on Principal Component Analysis(PCA). This method reshapes the SAR images matrix into vectors, and analyzes the matrix which is composed of the two vectors with PCA process, getting a conclusion that the minor component image is the change portion. This paper also realizes high-effectively the algorithm for SAR image change detection . Finally, compared with the methods based on the Log-Ratio and Multi-Block PCA, it is proved to be valid and effective.
-
黄勇,王建国,黄顺吉. 基于图像分割的SAR图像变化检测算法及实现. 信号处理,2005, 21(2): 149-152.Huang Yong, Wang Jianguo, and Huang Shunji. SAR imagechange detection based on image segmentation. SignalProcessing, 2005, 21(2): 149-152.[2]Qiu B, Prinet V, Perrier E, and Monga O. Multi-block PCAmethod for image change detection. Proceedings of the 12thInternational Conference on Image Analysis and Processing,Mantova, Italy, 17-19 Sept, 2003: 385-390.[3]Zhang Shiqing and Lu Hanqing. Learning texture classifierfor flooded region detection in SAR images. InternationalConference on Computer Graphics, Imaging and Vision: NewTrends, Beijing, China, 26-29 July, 2005: 93-98.[4]Bazi Y, Bruzzone L, and Melgani F. Automatic identificationof the number and values of decision thresholds in thelog-ratio image for change detection in SAR images[J].IEEEGeoscience and Remote Sensing Letters.2006, 3(3):349-353[5]Carincotte C, Derrode S, and Bourennane S. Unsupervisedchange detection on SAR images using fuzzy hidden markovchains[J].IEEE Transactions on Geoscience and RemoteSensing.2006, 44(2):432-441
计量
- 文章访问数: 3844
- HTML全文浏览量: 124
- PDF下载量: 1100
- 被引次数: 0