基于免疫克隆量子算法的多用户检测器
doi: 10.3724/SP.J.1146.2006.01900
Multiuser Detector Based on Immune Clonal Quantum Algorithm
-
摘要: 为了解决CDMA系统最佳多用户检测的高计算复杂度问题,基于免疫克隆选择理论和新的遗传量子算法,该文提出了免疫克隆量子算法。该算法把根据神经网络制作的疫苗接种到克隆量子算法的每一代中,通过接种疫苗到CQA中,可以加快CQA的收敛速度减少计算复杂度。另外,CQA所提供的好的初值可以改善疫苗的性能,接种的疫苗还改善了CQA的性能,文中给出了在免疫克隆量子算法中使用随机神经网络制作疫苗的统一理论框架结构。仿真结果证明了该方法不仅能够快速收敛到全局最优解,并且无论抗多址干扰能力和抗远近效应能力都优于传统检测器和一些应用以前智能计算算法的多用户检测器。Abstract: Based on the immune clonal selection theory and the novel genetic quantum algorithm, an Immune Clonal Quantum Algorithm (ICQA) is proposed to solve high complexity of optimum multiuser detection in code division multiple access systems. Using this algorithm, the vaccine based on Hopfield neural network is inoculated into the Clonal Quantum Algorithm (CQA ) to improve further the fitness of the population at each generation. Such a hybridization of the CQA with the stochastic Hopfield neural network reduces its computational complexity by providing faster convergence. In addition, a better initial data estimation supplied by the CQA improves the performance of the vaccine, and the inoculated vaccine improves the performance of the CQA. The uniform theoretic framework of the making vaccine based on the stochastic Hopfield neural network is presented. Simulation results show that the proposed detector not only can achieves the global optimization value in fast convergence rate, but also is obviously superior to the conventional detector and the multiuser detectors based on previous intelligent algorithms in cancellation of the multiple access interference and the near-far effect.
-
Zhang J H, Huai J P, and Xiao R Y, et al.. Resourcemanagement in the next generation DS-CDMA cellularnetworks[J].IEEE Communications Magazine.2004, 11(4):52-58[2]Ergun C and Hacioglu K. Multiuser detection using a geneticalgorithm in CDMA communications systems[J].IEEE Trans.on Commun.2000, 48(8):1374-1383[3]杨红孺,高洪元,庞伟正等. 基于离散粒子优化算法的多用户检测器[J]. 哈尔滨工业大学学报, 2005, 37(9): 1303-1306.Yang H R, Gao H Y, and Pang W Z, et al.. Multiuser detectorbased on discrete particle swarm optimization algorithm [J].Journal of Harbin Institute of Technology, 2005, 37(9):1303-1306.[4]焦李成, 慕彩红, 王伶. 通信中的智能信号处理[M]. 电子工业出版社, 2006.Jiao L C, Mu C H, and Wang L. Intelligent Signal Processingfor Communications[M]. Publishing House of ElectronicsIndustry, 2006.[5]Verdu S. Minimum probability of error for asynchronousGaussian multiple-access channels[J].IEEE Trans. on InfoTheory.1986, 32(1):85-96[6]Han K H and Kim J H. Genetic quantum algorithm and itsapplication to combinatorial optimization problem[A].Proceedings of the 2000 IEEE International Conference onEvolutionary Computation[C].California, CA, USA: IEEEPress, 2000: 1354-1360.[7]Manolakos E S. Hopfield neural network implementation ofthe optimal CDMA multiuser detector[J].IEEE Transactionson Neural Networks.1996, 7(1):131-141[8]De Castro L N and Von Zuben F J. The clonal selectionalgorithm with engineering application[A]. Genetic andevolutionary computation conference [C]. Las vegas, USA,2000: 36-37.[9]王永刚, 焦李成. 基于随机Hopfield 神经网络的最优多用户检测器[J]. 电子学报, 2004, 32(10): 1630-1634.Wang Y G and Jiao L C. Optimal multiuser detectors basedon the schochastic Hopfield network[J]. Actc ElectrionicaSinica, 2004, 32(10): 1630-1634.
计量
- 文章访问数: 3395
- HTML全文浏览量: 80
- PDF下载量: 785
- 被引次数: 0