高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代中心差分卡尔曼滤波的说话人跟踪方法

侯代文 殷福亮

侯代文, 殷福亮. 基于迭代中心差分卡尔曼滤波的说话人跟踪方法[J]. 电子与信息学报, 2008, 30(7): 1684-1689. doi: 10.3724/SP.J.1146.2006.01897
引用本文: 侯代文, 殷福亮. 基于迭代中心差分卡尔曼滤波的说话人跟踪方法[J]. 电子与信息学报, 2008, 30(7): 1684-1689. doi: 10.3724/SP.J.1146.2006.01897
Hou Dai-wen, Yin Fu-liang. Iterated Central Difference Kalman Filter Based Speaker Tracking[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1684-1689. doi: 10.3724/SP.J.1146.2006.01897
Citation: Hou Dai-wen, Yin Fu-liang. Iterated Central Difference Kalman Filter Based Speaker Tracking[J]. Journal of Electronics & Information Technology, 2008, 30(7): 1684-1689. doi: 10.3724/SP.J.1146.2006.01897

基于迭代中心差分卡尔曼滤波的说话人跟踪方法

doi: 10.3724/SP.J.1146.2006.01897
基金项目: 

国家自然科学基金(60372082)和教育部跨世纪优秀人才基金资助课题

Iterated Central Difference Kalman Filter Based Speaker Tracking

  • 摘要: 利用状态空间方法对说话人进行语音跟踪时,观测方程的非线性会影响说话人位置的估计精度。该文将迭代滤波理论与中心差分卡尔曼滤波技术相结合,提出迭代的中心差分卡尔曼滤波方法,并应用于说话人跟踪系统。仿真实验结果表明,该文所提出的方法减少了系统线性化误差,增强了滤波算法的鲁棒性,提高了说话人跟踪精度。
  • Potamitis I, Chen H, and Tremoulis G. Tracking of multiplemoving speakers with multiple microphone arrays[J].IEEETrans. on Speech and Audio Processing.2004, 12(5):520-529[2]Bangs W and Schultheis P. Space-time processing for optimalparameter estimation. in Signal Processing, Grriffiths J,Stocklin P and Schooneveld C V Eds., New York: AcademicPress , 1973: 577-590.[3]Brandstein M A. Framework for speech source localizationusing sensor arrays. [Ph.D. Thesis], Brown University,Providence, RI, U.S.A, 1995.[4]Sturim D, Brandstein M, and Silverman H. Trackingmultiple talkers using microphone array measurements.Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing, Munich, Germany, 1997:371-374.[5]Bizwas K K and Mahalanabis A K. Suboptimal algorithm fornonlinear smoothing[J].IEEE Trans. on Aerospace andElectronic Systems.1973, 9(4):529-534[6]Julier S and Uhlmann J K. Unscented filtering and nonlinearestimation[J].Procee. IEEE.2004, 92(3):401-422[7]Ngarrd M, Poulsen N, and Ravn O. New developments instate estimation for nonlinear systems[J].Automatica.2000,36(11):1627-1638[8]Ito K and Xiong K. Gaussian filters for nonlinear filteringproblems[J].IEEE Trans. on Automatic Control.2000, 45(5):910-927[9]Dennis J and Schnabel R. Numerical Methods forUnconstrained Optimization and Nonlinear Equations.Philadelphia: SIAM, 1996: 218-236.[10]Bar-Shalom Y and Fortmann T. Tracking and DataAssociation. London: Academic Press Inc, 1988: 119-122.[11]Bellaire R L, Kamen E W, and Zabin S M. A new nonlineariterated filter with applications to target tracking. inProceedings of 1995 SPIE Conference on Signal and DataProcessing of Small Targets, Orlando, FL, USA, April 1995,2561: 240-251.[12]More J. The Levenberg-Marquardt algorithm: implementationand theory. in Numerical Analysis, Watson G A Ed., LectureNotes in Math, 630, Springer Verlag, Berlin: 1978: 105-116.[13]Vermaak J and Blake A. Nonlinear filtering for speakertracking in noisy and reverberant environments. IEEEInternational Conference on Acoustics, Speech, and SignalProcessing, Salt Lake City, USA, 2001: 3021-3024.[14]Knapp C H and Carter G C. The generalized correlationmethod for estimation of time delay[J].IEEE Trans. onAcoustics, Speech and Signal Processing.1976, 24(4):320-327[15]Allen J B and Berkley D A. Image method for efficientlysimulating small-room acoustics[J].Journal of the AcousticalSociety of America.1979, 65(4):943-950
  • 加载中
计量
  • 文章访问数:  3344
  • HTML全文浏览量:  95
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-11-30
  • 修回日期:  2007-06-08
  • 刊出日期:  2008-07-19

目录

    /

    返回文章
    返回