MIMO系统中16-QAM信号的软值输出半正定松弛检测
doi: 10.3724/SP.J.1146.2006.01828
Soft Semi-definite Relaxation for Detection of 16-QAM Signaling in MIMO Systems
-
摘要: 使用最优化理论与方法研究了MIMO系统中16-QAM信号的软值输出半正定松弛检测问题,推导了16-QAM信号的软值输出半正定松弛检测器软值计算所需附加的约束条件,并提出了一种降维近似处理方法,通过降维近似处理大大降低了软输出检测器的复杂度。仿真结果表明:通过附加约束条件和降维近似处理,软值输出半正定松弛检测器获得了较好的检测性能,降维近似处理降低了软输出SDR检测器的运算复杂度,但会产生0.2~0.4dB的性能损失。Abstract: In this paper, soft semi-definite relaxation for detection of 16-QAM signaling in MIMO systems is investigated. Additional constraints and dimension-reduction approximation method are proposed, which can be used to calculate the Log-Likelihood Ratio (LLR) and reduce dimensions of the SDR detection, respectively. Simulations show that the soft SDR detector exhibits a better performance in a flat-fading MIMO channels, and the complexity of the soft detector is considerably reduced by reducing the dimensions of the SDR programming, but the performance loss leads by dimension reduction is about 0.2 to 0.4 dB.
-
Ma W K, Davidson T N, Wong K M, Luo Z Q, and Ching PC. Quasi-maximum-likelihood multiuser detection usingsemi-definite relaxation with application to synchronousCDMA[J].IEEE Trans. on Signal Processing.2002, 50(4):912-922[2]Windpassinger C. Detection and precoding for multipleinputmultiple-output channels. [PhD Dissertation], ErlangenUniversity, 2004.[3]Helmberg C, Rendl F, Vanderbei R J, and Wolkowicz H. Aninterior point method for semi-definite programming[J].SIAM J.Optim.1996, 6(2):342-361[4]Wiesel Y C E A and Shamai S. Semidefinite relaxation fordetection of 16-QAM signaling in mimo channels[J].IEEESignal Processing Letters.2005, 12(9):653-656[5]Steingrimsson B, Zhi-Quan Luo, and Wong K M. Softquasi-maximum-likelihood detection for multiple-antennawireless channels[J].IEEE Trans. on Signal Processing.2003,51(11):2710-2719[6]Hochwald B M and Brink S T. Achieving near-capacity on amultiple-antenna channel[J].IEEE Trans. on Commun.2003,51(3):389-399[7]Sturm J. Using sedumi 1.02, a matlab toolbox foroptimization over symmetric cones. Optimization Methodsand Software, 1999, 11(12): 625-653.[8]Lberg Johan. YALMIP: A toolbox for modeling andoptimization in MATLAB. IEEE International Symposiumon Computer Aided Control Systems Design, Taipei, Taiwan,Sept. 2-4, 2004: 284-289.
计量
- 文章访问数: 3112
- HTML全文浏览量: 97
- PDF下载量: 1282
- 被引次数: 0