高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维小波变换和独立分量分析的SAR图像去噪方法

卢晓光 韩萍 吴仁彪 刘瑞华

卢晓光, 韩萍, 吴仁彪, 刘瑞华. 基于二维小波变换和独立分量分析的SAR图像去噪方法[J]. 电子与信息学报, 2008, 30(5): 1052-1055. doi: 10.3724/SP.J.1146.2006.01668
引用本文: 卢晓光, 韩萍, 吴仁彪, 刘瑞华. 基于二维小波变换和独立分量分析的SAR图像去噪方法[J]. 电子与信息学报, 2008, 30(5): 1052-1055. doi: 10.3724/SP.J.1146.2006.01668
Lu Xiao-guang, Han Ping, Wu Ren-biao, Liu Rui-hua . An Approach for SAR Image Despeckling Based on 2D-Wavelet Transform and ICA[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1052-1055. doi: 10.3724/SP.J.1146.2006.01668
Citation: Lu Xiao-guang, Han Ping, Wu Ren-biao, Liu Rui-hua . An Approach for SAR Image Despeckling Based on 2D-Wavelet Transform and ICA[J]. Journal of Electronics & Information Technology, 2008, 30(5): 1052-1055. doi: 10.3724/SP.J.1146.2006.01668

基于二维小波变换和独立分量分析的SAR图像去噪方法

doi: 10.3724/SP.J.1146.2006.01668
基金项目: 

国家杰出青年基金项目(60325102),国家863计划(2006AA12Z313),深圳大学ATR国防科技重点实验室开放课题(200603)和中国民航大学科研启动基金(Qd04q10)资助课题

An Approach for SAR Image Despeckling Based on 2D-Wavelet Transform and ICA

  • 摘要: 该文给出了一种基于离散小波变换和独立分量分析的SAR图像斑点噪声抑制方法。首先利用小波变换对图像进行分解,然后将分解出的各部分子图像分别进行独立分量分析,提取出相应的独立源,去除噪声分量,最后依次进行ICA重构和小波重构。该文还同时比较了采用不同小波基函数时斑点噪声的抑制效果,研究了它们对斑点抑制的影响。对MSTAR实测SAR图像的实验结果表明该方法能够有效地抑制图像中的斑点噪声,且在性能上优于ICA和Lee滤波方法。
  • Lee J S. Speckle analysis and smoothing algorithm forsynthetic aperture radar images [J].Computer Graphic andImage Processing.1981, 17(1):24-32[2]Frost V S, Stiles J A, and Shanmugan K S, et al.. A model forradar images and its application to adaptive digital filteringof multiplicative noise [J].IEEE Trans. on Pattern Analysisand Machine Intelligence.1982, PAMI-4(2):157-166[3]Zhang J, Cheng X G, and Liu J. A speckle reductionalgorithm by soft-thresholding based on wavelet filters forSAR images [C]. Proc. Int. Conf. Signal Processing, Beijing,1998, 2: 1469-1472.[4]Xie H, Pierce L E, and Ulaby F T. SAR speckle reductionusing wavelet denoising and Markov random field modeling[J].IEEE Trans. on Geoscience and Remote Sensing.2002,40(10):2196-2212[5]Achim A, Tsakalides P, and Bezerianos A. SAR imagedenoising via Bayesian wavelet shrinkage based onheavy-tailed modeling [J].IEEE Trans. on Geoscience andRemote Sensing.2003, 41(8):1773-1784[6]Field D J. What is the goal of sensory coding [J]. NeuralComputation, 1994, 6(4): 559-601.[7]Hyv鋜inen A, Oja E, and Hoyer P, et al.. Image featureextraction by sparse coding and independent componentanalysis [C]. Proc. Int. Conf. on Pattern Recognition(ICPR'98), Brisbane, Australia, 1998, 12: 1268-1273.[8]Chen C H and Wang X J. A novel theory of SAR imagerestoration and enhancement with ICA [C]. IEEE Geoscienceand Remote Sensing Symposium, Anchorage, America, 2004,6: 3911-3914.[9]Hyv鋜inen A. Fast and robust fixed-point algorithms forindependent component analysis [J]. IEEE Trans. on NeuralNetworks, 1999, 10(3): 626-634.[10]Bell A J and Sejnowski T J. An Information-Maximizationapproach to blind separation and blind deconvolution [J].Neural Computation.1995, 7(6):1129-1159[11]Mallat S G. A theory for multiresolution signaldecomposition: The wavelet representation [J].IEEE Trans.on Pattern Analysis and Machine Intelligence.1989, 11(7):674-693[12]Daubechies I. Ten Lectures on Wavelets. CBMS-NSFRegional Conf. Series in Applied Mathematics, PhiladelphiaPennsylvania, March 1992, 61: 67-72.[13]Azzerboni B, Finocchio G, and Ipsale M, et al.. A newapproach to detection of muscle activation by independentcomponent analysis and wavelet transform. Springer-Verlag,Lecture Notes in Computer Science, 2002, 2486: 109-116.[14]Azzerboni B, Carpentieri M, and La Foresta F, et al..Neural-ICA and wavelet transform for artifacts removal insurface EMG [J]. Proceedings of 2004 International JointConf. on Neural Networks, Budapest, Hungary, 2004, 4:3223-3228.[15]Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images [M]. Boston: Artech House, 1998, Part 4.4.
  • 加载中
计量
  • 文章访问数:  3552
  • HTML全文浏览量:  122
  • PDF下载量:  1465
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-30
  • 修回日期:  2007-04-06
  • 刊出日期:  2008-05-19

目录

    /

    返回文章
    返回