MLFMA分析复杂载体平台上天线问题
doi: 10.3724/SP.J.1146.2006.01271
Analysis of Antennas Mounted on Complex Platforms Using MLFMA
-
摘要: 该文分析了导体介质复合结构平台上线天线的辐射问题。利用等效原理建立EFIE-PMCHW表面积分方程组,定义线、面和连接基函数描述复杂结构上电流分布,分析了导体介质分界面处基函数的处理;利用多层快速多极子方法(MLFMA)加速迭代求解过程中的矩阵矢量相乘运算,并用于有耗媒质求解。MLFMA的运用极大地提高了求解实际电大问题的能力。数值计算结果验证了方法的正确性和高效性。Abstract: Wire antennas mounted on complex platform combined with conducting and dielectric objects are analyzed in this paper. EFIE-PMCHW boundary coupled integral equations are constructed by using equivalence principle. The surface, wire and junction basis functions are defined to simulate the current distribution on the complex structure and the selection of the basis functions on the boundary of the conducting/dielectric interface is analyzed. Multi-Level Fast Multipole Algorithm (MLFMA) is employed to accelerate the matrix-vector multiplication and solve the loss problem. Application of MLFMA increases the ability to solve the large-scale problem. Numerical examples validate this method and demonstrate the accuracy and high efficiency of this method.
-
Chao H Y, Song G M, Michielssen E, and Chew W C. The multilevel fast multipole algorithm for analyzing electromagnetic radiation from complex surface-wire structures. Proceedings of the 1998 Antenna Applications Symposium, Alerton Park, Monticello, IL, 1998: 291-303.[2]万继响, 张玉, 梁昌洪. 任意导体与线天线连接问题的MOM分析[J].电波科学学报.2003, 18(5):523-528Wan J X, Zhang Y, and Liang C H. Method of moment analysis of connect between wire antennas and arbitrary shape conductors. Chinese Journal of Radio Science, 2003, 18 (5): 523-528.[3]Lu C C and Chew W C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets. IEEE Trans on AP, 2001, 48(12): 1866-1868.[4]姚海英. 介质以及涂敷介质结构电磁散射特性的基础研究: 积分方程方法及其快速求解. [博士论文]. 电子科技大学, 2002.[5]Yao H Y. Basic study of electromagnetic scattering from dielectric and coated structures-integral equation method and its fast solver. [Dissertation]. University of Electronic Science and Technology of China, 2002. [5] Rao S M, Wilton D R, and Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans on AP, 1982, 30(5): 409-418.[6]Costa M F and Harrington R F. Minimization of radiation from computer systems. Proc. Int. Electrical Electronics Conference, Canada, Sept.1983: 660-665.[7]聂在平, 胡俊, 姚海英, 王浩刚. 用于复杂目标三维矢量散射分析的快速多极子方法. 电子学报. 1999, 27(6): 104-109.[8]Nie Z P, Hu J, Yao H Y, and Wang H G. The fast multipole methods for vector analysis of scattering from 3-dimensional objects with complex structure. Acta Electronica Sinca, 1999, 27(6): 104-109.[9]Geng N, Sullivan A, and Carin L. Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space. IEEE Trans on AP, 2001, 49(5): 740-748. 期刊类型引用(13)
1. 刘迪,朱敏,武岩波. 水下传感器网络移动节点时间同步算法研究. 网络新媒体技术. 2022(04): 35-41+51 . 百度学术
2. 刘广钟,田纪尧,孔维全. 基于节点测速的水下传感器时钟同步迭代算法. 计算机工程与设计. 2020(06): 1522-1527 . 百度学术
3. 刘迪,武岩波,朱敏,李栋. 水声传感器网络中时钟漂移率跟踪方法. 声学技术. 2020(04): 406-412 . 百度学术
4. 郭瑛,王进新,郑连振. 多信源海洋物联网定位. 郑州大学学报(理学版). 2019(04): 95-101 . 百度学术
5. 金彦亮,姚彬,张晓帅. 结合Chirp信号的单向广播机制水下无线传感器网络时间同步算法. 上海大学学报(自然科学版). 2018(06): 877-887 . 百度学术
6. 郭瑛,王进新. 海洋传感器网络参数自适应时间同步算法. 通信学报. 2017(S1): 67-72 . 百度学术
7. 王建平,王全蕊,朱凤杰,陈伟,韩亚峰. 基于MIMO分集和复用折衷的水下传感器网络节能算法. 微电子学与计算机. 2017(03): 136-140 . 百度学术
8. 陈西宏,刘赞,刘继业,刘进,张群. 低仰角下对流层散射斜延迟估计方法. 电子与信息学报. 2016(02): 408-412 . 本站查看
9. 张红军,张亚利. UWSNs中基于深度调整的混合型路由协议. 计算机工程与设计. 2016(11): 2898-2903+2938 . 百度学术
10. 钟伟雄,胡玉鹏. 水下无线传感网深度调整的混合型路由协议. 实验室研究与探索. 2016(07): 85-90 . 百度学术
11. 孔德川,王建平,陈伟. 基于蚁群算法的水声传感器网络信号检测方法. 仪表技术与传感器. 2016(08): 100-104 . 百度学术
12. 洪昌建,吴伟杰,唐平鹏. 动态分层的水下传感器网络分簇路由算法. 电子与信息学报. 2015(06): 1291-1297 . 本站查看
13. 孙海文,欧阳中辉,杜亚杰. 载波相位DGPS标校系统时间同步设计与仿真. 海军航空工程学院学报. 2015(04): 336-340 . 百度学术
其他类型引用(10)
-
计量
- 文章访问数: 3034
- HTML全文浏览量: 91
- PDF下载量: 915
- 被引次数: 23