高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的交互式多模型粒子滤波跟踪算法

刘贵喜 高恩克 范春宇

刘贵喜, 高恩克, 范春宇. 改进的交互式多模型粒子滤波跟踪算法[J]. 电子与信息学报, 2007, 29(12): 2810-2813. doi: 10.3724/SP.J.1146.2006.01267
引用本文: 刘贵喜, 高恩克, 范春宇. 改进的交互式多模型粒子滤波跟踪算法[J]. 电子与信息学报, 2007, 29(12): 2810-2813. doi: 10.3724/SP.J.1146.2006.01267
Liu Gui-xi, Gao En-ke, Fan Chun-yu . Tracking Algorithms Based on Improved Interacting Multiple Model Particle Filter[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2810-2813. doi: 10.3724/SP.J.1146.2006.01267
Citation: Liu Gui-xi, Gao En-ke, Fan Chun-yu . Tracking Algorithms Based on Improved Interacting Multiple Model Particle Filter[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2810-2813. doi: 10.3724/SP.J.1146.2006.01267

改进的交互式多模型粒子滤波跟踪算法

doi: 10.3724/SP.J.1146.2006.01267
基金项目: 

国家部级基金资助课题

Tracking Algorithms Based on Improved Interacting Multiple Model Particle Filter

  • 摘要: 通常的交互多模型卡尔曼滤波(IMMKF)或交互多模型扩展卡尔曼滤波(IMMEKF)对于非高斯问题无能为力;对于非线性问题,其性能不及交互多模型粒子滤波算法(IMMPF)。粒子滤波能够处理非线性/非高斯问题,其与交互式多模型结合用来获得更好的跟踪性能。然而,粒子滤波的主要问题是巨大的计算量,由于粒子滤波通常采用大量的粒子数目,将带来很大的计算负荷。该文提出了一种改进的交互多模型粒子滤波算法,其利用多模型综合使用了卡尔曼滤波和粒子滤波,与常规交互式多模型粒子滤波(IMMPF)相比,大大改善了计算效率。对于非线性/非高斯问题,其性能与IMMPF相当;对于线性问题,其性能与IMMEKF相当,并优于IMMPF的性能。
  • Mazor E, Averbuch A, and Bar-shalom Y, et al.. Interacting multiple model methods in target tracking: A survey [J].IEEE Trans. on Aerospace and Electronic Systems.1998, 34 (1):103-122[2]Blom H A P and Bar-shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. on Automatic Control, 1988, AC-33 (8): 780-783.[3]Lang Hong. Multirate interacting multiple model filtering for target tracking using multirate models[J].IEEE Trans. on Automatic Control.1999, 44(7):1326-1340[4]Kim Byung-Doo and Lee Ja-Sung. IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking. 2005 IEEE International Radar Conference, Arlington, Virginia, USA, May 2005: 757-762.[5]Merwe van der R, Doucet A, and Freitas de N, et al.. The unscented particle filter. Technical Report CUED/F- INFENG/R 380, Cambridge University Engineering Department, 2000.[6]Arulampalam M S, Maskell S, and Gordon N, et al.. A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing.2002, 50 (2):174-188[7]Boers Y and Driessen J N. Interacting multiple model particle filter[J].IEE Proc.-Radar Sonar Navig.2003, 150 (5):344-349[8]Blom H A P and Bloem E A. Particle filtering for stochastic hybrid systems. 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 2004, 3: 3221-3226.[9]Morelande M R and Challa S. Maneuvering target tracking in clutter using particle filters[J].IEEE Trans. on Aerospace and Electronic Systems.2005, 41 (1):252-270
  • 加载中
计量
  • 文章访问数:  4388
  • HTML全文浏览量:  109
  • PDF下载量:  2074
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-18
  • 修回日期:  2007-04-27
  • 刊出日期:  2007-12-19

目录

    /

    返回文章
    返回