Rangaswamy M and Weiner D. Non-Gaussian random vectoridentification using spherically invariant random process.IEEE Trans. on AES , 1993, 29(1): 111-123.[2]Bede L and Munson D C. Generation of a random sequencegiving a jointly specified marginal distribution andautocovariance. IEEE Trans. on ASSP, 1982 , 30(6): 973-983.[3]Sondhi M M. Random processes with specified spectraldensity and first-order probability density. Bell SystemTechnical Journal, 1983, 62(3): 679-700.[4]Spurbeck M S and Scharf L L. Least squares filter design forperiodically correlated times series. IEEE Seventh SPWorkshop on Statistical Signal and Array Processing.Qubec, Canada, 1994: 267-270.[5]Kontorovitch V and Lyandres V. Stochastic differentialequations: An approach to the generation of continuous non-Gaussian processes[J].IEEE Trans, on SP.1995, 43(10):2372-2385[6]Primak S, Lyandres V, Kaufman O, and Kliger M. On thegeneration of correlated time series with a given probabilitydensity function[J].Signal Processing.1999, 72(2):61-68[7]Klebaner F. Introduction to Stochastic Calculus withApplication. London: Imperial College Press, 2001, Chap. 6.[8]张树京, 齐立心. 时间序列分析简明教程. 北京:清华大学出版社,北方交通大学出版社,2003, Chap. 2.Zhang S and Qi L. Course of Time Series[M]. Beijing:Tsinghua Univ Pr, North Jiaotong Univ. Pr., 2003, Chap. 2.[9]Kloeden P E, Platen E, and Schurz H. Numerical Solution ofSDE Through Computer Experiments. NY: Springer- Verlag,1994, Chap. 6.[10]Primak S.[J].Kontorovitch V, and Lyandres V. StochasticMethods and Their Applications to Communications:Stochastic Differential Equations Approach. NY: John Wiley Sons, Inc.2004,:-[11]Gradshteyn I S and Ryzhik I M. Table of Integrals, Series,and Products. 6th ed., Jeffrey A, Ed. NY: Academic,2000,Chap. 8.
|