高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

产生相关非高斯随机变量的扩散过程方法

扈罗全 朱洪波

扈罗全, 朱洪波. 产生相关非高斯随机变量的扩散过程方法[J]. 电子与信息学报, 2008, 30(2): 412-415. doi: 10.3724/SP.J.1146.2006.01083
引用本文: 扈罗全, 朱洪波. 产生相关非高斯随机变量的扩散过程方法[J]. 电子与信息学报, 2008, 30(2): 412-415. doi: 10.3724/SP.J.1146.2006.01083
Hu Luo-quan, Zhu Hong-bo. The Generation of Correlated Non-Gaussian Random Variables with Diffusion Processes[J]. Journal of Electronics & Information Technology, 2008, 30(2): 412-415. doi: 10.3724/SP.J.1146.2006.01083
Citation: Hu Luo-quan, Zhu Hong-bo. The Generation of Correlated Non-Gaussian Random Variables with Diffusion Processes[J]. Journal of Electronics & Information Technology, 2008, 30(2): 412-415. doi: 10.3724/SP.J.1146.2006.01083

产生相关非高斯随机变量的扩散过程方法

doi: 10.3724/SP.J.1146.2006.01083
基金项目: 

国家自然科学基金重点项目(60432040),国家自然科学基金项目(60572024),教育部新世纪优秀人才支持计划(NCET-04-0519)和教育部博士点基金项目(200509230031)资助课题

The Generation of Correlated Non-Gaussian Random Variables with Diffusion Processes

  • 摘要: 该文研究使用扩散过程产生相关非高斯随机变量。在遍历性假设的前提下,得到由随机微分方程(SDE)描述的Markov扩散过程的平稳分布,该分布由SDE模型中的漂移系数和扩散系数决定。选择扩散系数为x的一次幂,由待求随机变量所满足的平稳分布得到漂移系数,确定所需要的SDE,并使用Milstein高阶法求解此方程得到所需的随机变量。改变扩散系数中的常数可以改变所得随机样本的相关特性。以Nakagami分布和K-分布为例进行仿真分析,验证本文提出方法的准确性和有效性。
  • Rangaswamy M and Weiner D. Non-Gaussian random vectoridentification using spherically invariant random process.IEEE Trans. on AES , 1993, 29(1): 111-123.[2]Bede L and Munson D C. Generation of a random sequencegiving a jointly specified marginal distribution andautocovariance. IEEE Trans. on ASSP, 1982 , 30(6): 973-983.[3]Sondhi M M. Random processes with specified spectraldensity and first-order probability density. Bell SystemTechnical Journal, 1983, 62(3): 679-700.[4]Spurbeck M S and Scharf L L. Least squares filter design forperiodically correlated times series. IEEE Seventh SPWorkshop on Statistical Signal and Array Processing.Qubec, Canada, 1994: 267-270.[5]Kontorovitch V and Lyandres V. Stochastic differentialequations: An approach to the generation of continuous non-Gaussian processes[J].IEEE Trans, on SP.1995, 43(10):2372-2385[6]Primak S, Lyandres V, Kaufman O, and Kliger M. On thegeneration of correlated time series with a given probabilitydensity function[J].Signal Processing.1999, 72(2):61-68[7]Klebaner F. Introduction to Stochastic Calculus withApplication. London: Imperial College Press, 2001, Chap. 6.[8]张树京, 齐立心. 时间序列分析简明教程. 北京:清华大学出版社,北方交通大学出版社,2003, Chap. 2.Zhang S and Qi L. Course of Time Series[M]. Beijing:Tsinghua Univ Pr, North Jiaotong Univ. Pr., 2003, Chap. 2.[9]Kloeden P E, Platen E, and Schurz H. Numerical Solution ofSDE Through Computer Experiments. NY: Springer- Verlag,1994, Chap. 6.[10]Primak S.[J].Kontorovitch V, and Lyandres V. StochasticMethods and Their Applications to Communications:Stochastic Differential Equations Approach. NY: John Wiley Sons, Inc.2004,:-[11]Gradshteyn I S and Ryzhik I M. Table of Integrals, Series,and Products. 6th ed., Jeffrey A, Ed. NY: Academic,2000,Chap. 8.
  • 加载中
计量
  • 文章访问数:  2954
  • HTML全文浏览量:  73
  • PDF下载量:  762
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-07-20
  • 修回日期:  2007-01-22
  • 刊出日期:  2008-02-19

目录

    /

    返回文章
    返回