高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应误差惩罚支撑向量回归机

陈晓峰 王士同 曹苏群

陈晓峰, 王士同, 曹苏群. 自适应误差惩罚支撑向量回归机[J]. 电子与信息学报, 2008, 30(2): 367-370. doi: 10.3724/SP.J.1146.2006.01081
引用本文: 陈晓峰, 王士同, 曹苏群. 自适应误差惩罚支撑向量回归机[J]. 电子与信息学报, 2008, 30(2): 367-370. doi: 10.3724/SP.J.1146.2006.01081
Chen Xiao-feng, Wang Shi-tong, Cao Su-qun. SVR with Adaptive Error Penalization[J]. Journal of Electronics & Information Technology, 2008, 30(2): 367-370. doi: 10.3724/SP.J.1146.2006.01081
Citation: Chen Xiao-feng, Wang Shi-tong, Cao Su-qun. SVR with Adaptive Error Penalization[J]. Journal of Electronics & Information Technology, 2008, 30(2): 367-370. doi: 10.3724/SP.J.1146.2006.01081

自适应误差惩罚支撑向量回归机

doi: 10.3724/SP.J.1146.2006.01081
基金项目: 

2004年教育部优秀人才支持计划(NCET-04-0496),模式识别国家重点实验室开放课题,南京大学软件新技术国家重点实验室开放课题,教育部重点科学研究项目(105087)和国防应用基础研究基金项目(A1420061266)资助课题

SVR with Adaptive Error Penalization

  • 摘要: 该文提出一种支撑向量回归机AEPSVR。它首先用 -SVR求得一个近似的支撑向量回归函数,在此基础上,引入一种新自适应误差惩罚函数,通过迭代,得到鲁棒的支撑向量回归机。该方法因以 -SVR为基础,故可以应用各种求解SVR的优化算法。实验表明,该支撑向量回归机AEPSVR能显著地降低离群点的影响,具有良好的泛化性能。
  • Smola A J and Schkopf B. A tutorial on support vectorregression[J].Statistics and Computing.2004, 14(3):199-222[2]Schokopf B, Smola A J and Williamson R C, et al.. Newsupport vector algorithm[J].Neural Computation.2000, 12(12):1207-1245[3]Song Q, Hu W, and Xie W. Robust support vector machinewith bullet hole image classification[J].IEEE Trans. on Systems,Man and Cybernetics C.2002, 32(4):440-448[4]Weston J and Herbrich R. Adaptive margin support vectormachines. Neural Information Processing Systems (NIPS)Conference Workshop on Advance in Large MarginClassifiers, Breckenridge Colorado USA, 1998: 281-296.[5]Xu Linli, Crammer K, and Schuurmans D. Robust supportvector machine training via convex outlier ablation. InProceedings of the 21st National Conference on ArtificialIntelligence(AAAI-06), Boston USA, 2006: 536-546.[6]Zhan Yiqiang and Shen Dinggang. An adaptive errorpenalization method for training an efficient and generalizedSVM[J].Pattern Recognition.2006, 39(3):342-350[7]张讲社,郭高. 加权稳健支撑向量回归方法. 计算机学报,2005, 28(7): 1171-1177.Zhang Jiang-she and Guo Gao. Reweighted robust supportvector regression method. Chinese Journal of Computer, 2005,28(7): 1171-1177.[8]Suykens J A K, De Brahanter J, Lukas L, and Vandewalle J.Weighted least squares support vector machine: robustnessand sparse approximation[J].Neurocomputing.2002, 48(1-4):85-105[9]Chuang C C, Su F F, Jeng J T, and Hsiao C C. Robustsupport regression networks for function approximation withoutliers[J].IEEE Trans. on Neural Networks.2002, 13(6):1322-1330[10]Yong Zhan and HaoZhong Cheng. A robust support vectoralgorithm for harmonic and interharmonic analysis of electricpower system[J].Electric Power Systems Research.2005, 73(3):393-400[11]Wang Shitong, Zhu Jiagang and Chung Fu-Lai, et al..Experimental study on parameter choices in norm-r supportvector regression machines with noisy input[J].Soft Computing.2006, 10(3):219-223[12]Wang Shitong, Zhu Jiagang and Chung Fu-Lai, et al..Theoretically optimal parameter choices for support vectorregression machines with noisy input[J].Soft Computing.2005,9(10):732-741
  • 加载中
计量
  • 文章访问数:  3125
  • HTML全文浏览量:  75
  • PDF下载量:  858
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-07-20
  • 修回日期:  2007-01-31
  • 刊出日期:  2008-02-19

目录

    /

    返回文章
    返回