高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层约束下基于局部和全局信息的图像插值新模型

仵冀颖 阮秋琦

仵冀颖, 阮秋琦. 双层约束下基于局部和全局信息的图像插值新模型[J]. 电子与信息学报, 2008, 30(1): 144-148. doi: 10.3724/SP.J.1146.2006.00878
引用本文: 仵冀颖, 阮秋琦. 双层约束下基于局部和全局信息的图像插值新模型[J]. 电子与信息学报, 2008, 30(1): 144-148. doi: 10.3724/SP.J.1146.2006.00878
Wu Ji-ying, Ruan Qiu-qi. A Two-layer Constraint Image Interpolation Model Basing on Both Local and Global Information[J]. Journal of Electronics & Information Technology, 2008, 30(1): 144-148. doi: 10.3724/SP.J.1146.2006.00878
Citation: Wu Ji-ying, Ruan Qiu-qi. A Two-layer Constraint Image Interpolation Model Basing on Both Local and Global Information[J]. Journal of Electronics & Information Technology, 2008, 30(1): 144-148. doi: 10.3724/SP.J.1146.2006.00878

双层约束下基于局部和全局信息的图像插值新模型

doi: 10.3724/SP.J.1146.2006.00878
基金项目: 

国家973项目(2004CB318005),国家自然科学基金(60472033)和教育部博士点基金(20030004023)资助课题

A Two-layer Constraint Image Interpolation Model Basing on Both Local and Global Information

  • 摘要: 该文提出一种双层约束的图像插值模型,模型在原始未插值图像梯度模约束下同时基于局部和全局信息处理。使用偏微分方程处理边缘像素,锐化边缘同时平滑边缘块状效应;平滑区域像素点的插值操作使用非局部均值模型,非局部均值模型通过对原始图像全局信息加权平均得到待处理图像像素值,图像平滑。使用双层约束模型处理纹理图像可以保持纹理特征,平滑纹理部分线形特征位置的块状效应。最后理论和实验结果证明使用双层控制模型可以直接将噪声图像插值放大。
  • Hou H S and Andrews H C. Cubic splines for imageinterpolation and digital filtering[J].IEEE Trans. on Acoustics,Speech, Signal Processing.1978, 26(6):508-517[2]Caselles V, Morel J M, and Sbert C. An axiomatic approachto image interpolation[J].IEEE Trans. on Image Processing.1998, 7(3):376-386[3]Morse B and Schwartzwald D. Image magnification usinglevel-set reconstruction. CVPR01,Hawaii, Dec 2001: 333-340.[4]Liu Z X, Wang H J, and Peng S L. An image magnificationmethod using joint diffusion[J].Journal of Computer Scienceand Technology.2004, 19(5):698-707[5]Fu S J. Adaptive image interpolation using coupledbidirectional flow. IEEE Int. Conf. on Image Processing,Genoa, Italy, Sep 2005, 2: II- 970-3.[6]Antoni B, Bartomeu C, and Morel J M. On Image DenoisingMethods. CMLA Preprint, CMLA 2004-15, 2004.[7]Wittman T. Mathematical techniques for image interpolation.Oral Exam. Paper, July 2005.[8]Allebach J and Wong P W. Edge-directed interpolation.IEEE International Conference on Image Processing,Lausanne, Switzerland, Sep 1996: 707-710.[9]Alvarez L and Mazorra L. Signal and image restoration usingshock filters and anisotropic diffusion. SIAM J. NumericalAnalysis, 1994, 31(2): 590-605.[10]邹谋炎. 反卷积和信号复原. 北京: 国防工业出版社, 2001:233-242.Zou Mou-yan. Deconvolution and Signal Recovery. Beijing:National Defence Industry Press, 2001: 233-242.
  • 加载中
计量
  • 文章访问数:  3287
  • HTML全文浏览量:  74
  • PDF下载量:  1076
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-19
  • 修回日期:  2006-11-23
  • 刊出日期:  2008-01-19

目录

    /

    返回文章
    返回