高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Zernike-Facet模型和总体最小二乘的弱小目标检测

胡谋法 陈曾平

胡谋法, 陈曾平. 基于Zernike-Facet模型和总体最小二乘的弱小目标检测[J]. 电子与信息学报, 2008, 30(1): 194-197. doi: 10.3724/SP.J.1146.2006.00794
引用本文: 胡谋法, 陈曾平. 基于Zernike-Facet模型和总体最小二乘的弱小目标检测[J]. 电子与信息学报, 2008, 30(1): 194-197. doi: 10.3724/SP.J.1146.2006.00794
Hu Mou-fa, Chen Zeng-ping. New Small Target Detection Algorithm via Zernike-Facet Model and the Total Least Squares[J]. Journal of Electronics & Information Technology, 2008, 30(1): 194-197. doi: 10.3724/SP.J.1146.2006.00794
Citation: Hu Mou-fa, Chen Zeng-ping. New Small Target Detection Algorithm via Zernike-Facet Model and the Total Least Squares[J]. Journal of Electronics & Information Technology, 2008, 30(1): 194-197. doi: 10.3724/SP.J.1146.2006.00794

基于Zernike-Facet模型和总体最小二乘的弱小目标检测

doi: 10.3724/SP.J.1146.2006.00794

New Small Target Detection Algorithm via Zernike-Facet Model and the Total Least Squares

  • 摘要: 弱小目标一般是图像局部区域的极值点。针对这个特点,依据二元三次函数的极值理论,该文提出了一种新的弱小目标候选点的检测方法。发展了一种新的图像局部灰度拟合模型,即Zernike-facet模型,模型参数的求解采用比最小二乘(LS)抗噪能力更强的总体最小二乘(TLS)算法。新检测方法通过Zernike-facet模型和TLS对原始图像中每一个像素的局部区域进行曲面拟合,然后在拟合曲面上提取极值点作为目标候选点。仿真表明,新方法在抑制噪声上优于其他常用方法。可见光/红外图像小目标检测实验也证实了新方法的有效性。
  • 李智勇, 沈振康, 杨卫平,等. 动态图像分析[M]. 北京: 国防工业出版社, 1999: 第7章.[2]Haralick R M. Digital step edges from zero crossing of second directional derivatives [J].IEEE Trans. on Pattern Anal. Mach. Intell..1984, PAMI 6(1):58-68[3]Ji Qiang and Haralick R M. Efficient facet edge detection and quantitative performance evaluation [J].Pattern Recognition.2002, 35(3):689-700[4]Zheng Sheng, Tian Yulong, and Tian Jinwen, et al.. Facet- based star acquisition method [J].Opt. Eng.2004, 43(11):2796-2805[5]Eom K B. Robust facet model for application to speckle noise removal [J].Proceeding of 17th International Conference on Pattern Recognition (ICPR04) [C], Cambridge UK.2004, vol 2:695-698[6]Van Weijer J and Van den Boomgaard R. Least squares and robust estimation of local image structure [J].International Journal of Computer Vision.2005, 64 (2/3):143-155[7]Roddier N. Atmospheric wavefront simulation using Zernike polynomials [J].Opt. Eng.1990, 29(19):1174-1179[8]Noll R J. Zernike polynomials and atmospheric turbulence[J].. J. Opt. Soc. Am. A.1976, 66(3):207-211[9]Golub G H and Van Loan C F. An analysis of the total least squares problem [J].SIAM J. Num. Analysis.1980, 17(6):883-893[10]邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2003,第3章.
  • 加载中
计量
  • 文章访问数:  3387
  • HTML全文浏览量:  85
  • PDF下载量:  1112
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-06
  • 修回日期:  2006-11-20
  • 刊出日期:  2008-01-19

目录

    /

    返回文章
    返回