Gordon N J, Salmond D J and Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proceedings.-F, 1993, 140(2): 107-113.[2]Julier S J and Uhlmann J K. Unscented filtering and nonlinear estimation [J].Proce. IEEE.2004, 92(3):401-422[3]Heine K. A survey of sequential Monte Carlo methods. Licentiate Thesis. Tampare University of Technology, 2005: 1-3, 53-55, 73-83.[4]Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter-Particle Filters for Tracking Applications [M]. Boston: Artech House, 2004: 32-45, 52-55.[5]Arulampalam M S, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayessian tracking [J].IEEE Trans. on Signal Processing.2002, 50(2):174-188[6]Crisan D and Doucet A. A survey of convergence results on particle filtering methods for practitioners [J].IEEE Trans. on Signal Processing.2002, 50(3):736-746[7]Van der Merwe R, Doucet A, Nando de Freitas, and Eric Wan. The Unscented Particle Filter [R]. Technical Report CUED/F- INFENG/TR 380, Cambridge University Engineering Department, 2000: 7-10.[8]Nordlund P J and Gustafsson F. Sequential Monte Carlo filtering techniques applied to integrated navigation system [J]. Proceedings of the American Control Conference, Arlington, June, 2001: 4375-4380.[9]Nordlund P J. Recursive state estimation of nonlinear systems with applications to integrated navigation [R]. Technical Report LITH-ISY-R-2321, Department of Electronic Engineering. Linkoping University, SE-58183 Linkoping, Sweden, 2000: 42-52.[10]Ristic B and Arulampalam M S. Tracking a manoeuvring target using angle-only measurements: algorithms and performance [J].Signal Processing.2003, 83:1223-1238[11]Blackman S and Popoli R. Design and analysis of modern tracking systems [M]. Boston: Artech House, 1999: 178-181.
|