高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种目标跟踪滤波的新方法

曲洪权 李少洪

曲洪权, 李少洪. 一种目标跟踪滤波的新方法[J]. 电子与信息学报, 2007, 29(9): 2120-2123. doi: 10.3724/SP.J.1146.2006.00738
引用本文: 曲洪权, 李少洪. 一种目标跟踪滤波的新方法[J]. 电子与信息学报, 2007, 29(9): 2120-2123. doi: 10.3724/SP.J.1146.2006.00738
Qu Hong-quan, Li Shao-hong. Novel Sequential Monte Carlo Method to Target Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2120-2123. doi: 10.3724/SP.J.1146.2006.00738
Citation: Qu Hong-quan, Li Shao-hong. Novel Sequential Monte Carlo Method to Target Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2120-2123. doi: 10.3724/SP.J.1146.2006.00738

一种目标跟踪滤波的新方法

doi: 10.3724/SP.J.1146.2006.00738

Novel Sequential Monte Carlo Method to Target Tracking

  • 摘要: 对于目标跟踪系统,当观测不确定性相对系统不确定性较大时,如果采用EKF,UKF算法,由于概率密度函数(PDF)由高斯分布近似使真实的分布结构扭曲,导致系统性能下降或发散,采用粒子滤波时,因为系统不确定性相对观测不确定性较小,所以重采样会使粒子间的独立性消失,导致系统性能下降。为了提高目标跟踪的精度,该文给出一种SMCEKF及SMCUKF滤波算法,在SMC(Sequential Monte Carlo)算法中分别引入EKF及UKF,由独立滤波器更新和传播的随机采样点和相应权重来表示状态的PDF,由于初值和滤波都是独立的,所以确保了表示PDF的随机样值的独立性,在滤波器个数较少、计算量较小的情况下使滤波性能得到提高。文中给出了理论分析和仿真实例证明算法的有效性。
  • Gordon N J, Salmond D J and Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proceedings.-F, 1993, 140(2): 107-113.[2]Julier S J and Uhlmann J K. Unscented filtering and nonlinear estimation [J].Proce. IEEE.2004, 92(3):401-422[3]Heine K. A survey of sequential Monte Carlo methods. Licentiate Thesis. Tampare University of Technology, 2005: 1-3, 53-55, 73-83.[4]Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter-Particle Filters for Tracking Applications [M]. Boston: Artech House, 2004: 32-45, 52-55.[5]Arulampalam M S, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayessian tracking [J].IEEE Trans. on Signal Processing.2002, 50(2):174-188[6]Crisan D and Doucet A. A survey of convergence results on particle filtering methods for practitioners [J].IEEE Trans. on Signal Processing.2002, 50(3):736-746[7]Van der Merwe R, Doucet A, Nando de Freitas, and Eric Wan. The Unscented Particle Filter [R]. Technical Report CUED/F- INFENG/TR 380, Cambridge University Engineering Department, 2000: 7-10.[8]Nordlund P J and Gustafsson F. Sequential Monte Carlo filtering techniques applied to integrated navigation system [J]. Proceedings of the American Control Conference, Arlington, June, 2001: 4375-4380.[9]Nordlund P J. Recursive state estimation of nonlinear systems with applications to integrated navigation [R]. Technical Report LITH-ISY-R-2321, Department of Electronic Engineering. Linkoping University, SE-58183 Linkoping, Sweden, 2000: 42-52.[10]Ristic B and Arulampalam M S. Tracking a manoeuvring target using angle-only measurements: algorithms and performance [J].Signal Processing.2003, 83:1223-1238[11]Blackman S and Popoli R. Design and analysis of modern tracking systems [M]. Boston: Artech House, 1999: 178-181.
  • 加载中
计量
  • 文章访问数:  3007
  • HTML全文浏览量:  77
  • PDF下载量:  968
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-29
  • 修回日期:  2006-10-16
  • 刊出日期:  2007-09-19

目录

    /

    返回文章
    返回