高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于独立成分分析的高光谱图像数据降维及压缩

冯燕 何明一 宋江红 魏江

冯燕, 何明一, 宋江红, 魏江. 基于独立成分分析的高光谱图像数据降维及压缩[J]. 电子与信息学报, 2007, 29(12): 2871-2875. doi: 10.3724/SP.J.1146.2006.00735
引用本文: 冯燕, 何明一, 宋江红, 魏江. 基于独立成分分析的高光谱图像数据降维及压缩[J]. 电子与信息学报, 2007, 29(12): 2871-2875. doi: 10.3724/SP.J.1146.2006.00735
Feng Yan, He Ming-yi, Song Jiang-hong, Wei Jiang. ICA-Based Dimensionality Reduction and Compression of Hyperspectral Images[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2871-2875. doi: 10.3724/SP.J.1146.2006.00735
Citation: Feng Yan, He Ming-yi, Song Jiang-hong, Wei Jiang. ICA-Based Dimensionality Reduction and Compression of Hyperspectral Images[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2871-2875. doi: 10.3724/SP.J.1146.2006.00735

基于独立成分分析的高光谱图像数据降维及压缩

doi: 10.3724/SP.J.1146.2006.00735
基金项目: 

国家自然科学基金(60572097)资助课题

ICA-Based Dimensionality Reduction and Compression of Hyperspectral Images

  • 摘要: 该文提出了一种以高光谱图像分析为目标的基于独立成分分析的高光谱图像降维和压缩方法。该方法首先通过独立成分分析提取高光谱数据的光谱特征实现高光谱图像降维,再对降维后的图像采用预测和自适应算术编码的方法进行压缩。对220波段和64波段高光谱数据的实验结果表明,该方法与基于主成分分析的降维相比,压缩比有所提高,特别是更有利于后续的分析处理,但峰值信噪比有所降低。
  • Kaarna A, Zemcik P, and iainen H, et al.. Compression of multispectral remote sensing images using clustering and spectral reduction. IEEE Trans. on Sci. Remote Sensing, 2000, 38(2): 1588-1592.[2]吴家骥,吴成柯. Karhunen-Loeve和小波变换的多光谱图像三维集合嵌入块编码压缩算法[J].电子与信息学报.2005,27(8):1244-1247浏览[3]闫敬文,沈贵明. 基于三维KLT/WT/WTVQ的多光谱数据压缩方法. 厦门大学学报,2001, 40(5): 1051-1055. Yan Jing-wen and Shen Gui-ming. A method for 3D multispectral data compression based on KLT/WT/WTVQ. Journal of Xiamen University, 2001, 40(5): 1051-1055.[4]张绍荣,苏令华. 一种基于主成分分析的高光谱图像压缩方法. 无线电工程,2005, 35(9): 53-54. Zhang Shao-rong and Su Ling-hua. A compression method of hyperspectral images based on PCA. Radio Engineering, 2005, 35(9): 53-54.[5]Ramakrishna B, Wang Jing, and Chang C I, et al.. Spectral/spatial hyperspectral image compression in conjunction with virtual dimensionality. Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XI, Proc. 5806, SPIE, 2005: 772-781.[6]Robila S A and Varshney P K. A fast source separation algorithm for hyperspectral image processing. IEEE International Conference on Geoscience and Remote Sensing, Toronto, Canada, 2002, 6: 3516-3518.[7]Lennon1 M, Mercier1 G, and Mouchot1 M C, et al.. Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images. IEEE International Conference on Geoscience and Remote Sensing, Sydney, Australian, 2001, 6: 2893-2895.[8]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans. on Neural Networks.1999,10(3):626-634
  • 加载中
计量
  • 文章访问数:  4123
  • HTML全文浏览量:  129
  • PDF下载量:  2191
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-29
  • 修回日期:  2006-12-20
  • 刊出日期:  2007-12-19

目录

    /

    返回文章
    返回