高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的像素级多聚焦图像融合算法

吴艳 刘重阳 廖桂生

吴艳, 刘重阳, 廖桂生. 一种新的像素级多聚焦图像融合算法[J]. 电子与信息学报, 2007, 29(12): 2800-2804. doi: 10.3724/SP.J.1146.2006.00667
引用本文: 吴艳, 刘重阳, 廖桂生. 一种新的像素级多聚焦图像融合算法[J]. 电子与信息学报, 2007, 29(12): 2800-2804. doi: 10.3724/SP.J.1146.2006.00667
Wu Yan, Liu Chong-yang, Liao Gui-sheng . A New Pixel-Level Multi-focus Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2800-2804. doi: 10.3724/SP.J.1146.2006.00667
Citation: Wu Yan, Liu Chong-yang, Liao Gui-sheng . A New Pixel-Level Multi-focus Image Fusion Algorithm[J]. Journal of Electronics & Information Technology, 2007, 29(12): 2800-2804. doi: 10.3724/SP.J.1146.2006.00667

一种新的像素级多聚焦图像融合算法

doi: 10.3724/SP.J.1146.2006.00667
基金项目: 

国家自然科学基金(60402038)和中国博士后科学基金(J63104020156)资助课题

A New Pixel-Level Multi-focus Image Fusion Algorithm

  • 摘要: 该文在小波变换的基础上提出了一种将一维自组织特征映射(SOFM)网络和进化策略相结合的多聚焦图像融合算法。该方法对不同聚焦点的图像进行冗余小波分解,再分别将其各方向、各尺度的高频信息进行叠加,并在高频信息叠加层上提取反映图像清晰度差异的归一化特征图,依据此特征图,使用SOFM网络对原始图像像素进行分类,并利用进化策略对各类像素求出最优的融合系数。实验结果表明该算法比拉普拉斯变换法和小波变换法具有更好的融合效果。
  • [1] Genderen J L and Van. Pohl C. Image fusion: Issues, techniques and applications, Intelligent Image Fusion. Proceedings EARSeL Workshop, Strasbourg, France, 11 Sept, 1994: 18-26. [2] Hall D L. Mathematical Techniques in Multisensor Data Fusion. Boston, Artech House, 1992: 20-59. [3] Burt P J and Adelson E H. The Laplacian pyramid as a compact image code [J].IEEE Trans. on Commun.1983, 31(4):532-540 [4] Burt P T and Lolczynski R J. Enhanced image capture through fusion. IEEE Proceedings of the 4th international Conference On Computer Vision, Berlin, Germany, 1993: 173-182. [5] Toet A. Hierarchical image fusion[J].Machine Vision and Application.1990, 3(2):1-11 [6] Li H, Manjunath B S, and Mitra S K. Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Processing.1995, 57(3):235-245 [7] David A Y. Image merging and data fusion by means of the discrete two-dimensional wavelet transform[J].J.Opt. Soc. Am. A.1995, 12(9):1834-1841 [8] Zhang Z and Blum R S. A categorization of multiscale decomposition-based image fusion schemes with a performance study for a digital camera application[J].Proc. IEEE.1999, 87(8):1315-1326 [9] Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J].IEEE Trans. on Pattern Analysis and Machina Intelligence.1989, 11(7):674-693 [10] Kohonen T. Self-organized formation of topologically correct feature maps[J].Biological Cybernetics.1982, 43(1):59-69 [11] Fogel D B and Fogel L J. An introduction to simulated evolutionary optimization[J]. IEEE Trans. on NN, 1994, 5(1): 3-14. [12] Li Shutao, Kwok J T, and Wang Yaonan. Multi-focus image fusion using artificial neural networks[J].Pattern Recognition Letters.2002, 23(6):985-997
  • 加载中
计量
  • 文章访问数:  4142
  • HTML全文浏览量:  108
  • PDF下载量:  1861
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-15
  • 修回日期:  2006-09-30
  • 刊出日期:  2007-12-19

目录

    /

    返回文章
    返回