高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析

刘建成 刘忠 王雪松 肖顺平 王国玉

刘建成, 刘忠, 王雪松, 肖顺平, 王国玉. 高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J]. 电子与信息学报, 2007, 29(10): 2337-2340. doi: 10.3724/SP.J.1146.2006.00314
引用本文: 刘建成, 刘忠, 王雪松, 肖顺平, 王国玉. 高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析[J]. 电子与信息学报, 2007, 29(10): 2337-2340. doi: 10.3724/SP.J.1146.2006.00314
Liu Jian-cheng, Liu Zhong, Wang Xue-song, Xiao Shun-ping, Wang Guo-yu. SNR Analysis of LFM Signal with Gaussian White Noise in Fractional Fourier Transform Domain[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2337-2340. doi: 10.3724/SP.J.1146.2006.00314
Citation: Liu Jian-cheng, Liu Zhong, Wang Xue-song, Xiao Shun-ping, Wang Guo-yu. SNR Analysis of LFM Signal with Gaussian White Noise in Fractional Fourier Transform Domain[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2337-2340. doi: 10.3724/SP.J.1146.2006.00314

高斯白噪声背景下的LFM信号的分数阶Fourier域信噪比分析

doi: 10.3724/SP.J.1146.2006.00314
基金项目: 

全国优秀博士学位论文专项资金(08100101)资助课题

SNR Analysis of LFM Signal with Gaussian White Noise in Fractional Fourier Transform Domain

  • 摘要: 目标大机动运动使雷达回波表现为频率和调频率参数均未知的LFM信号。未知参数LFM信号的检测和估计采用分数阶Fourier变换来实现受到越来越多的关注,为此本文着重分析其分数阶Fourier变换的信噪比。首先推导出时限线性调频信号的分数阶Fourier变换模平方,给出了在分数阶Fourier域的峰值点与未知参数的关系,然后研究了附加白噪声LFM信号在分数阶Fourier域的统计特性,确定了其信噪比,并与理想情况(即参数频率和调频率参数已知)下线性相位匹配滤波器的输出信噪比进行了比较。
  • Namias V. The fractional order Fourier transform and its applications to quantum mechanics[J].Journal of Institute Applied Math.1980, 25(3):241-265[2]Gianfranco Cariolario. A unified framework for the fractional Fourier transform[J].IEEE Trans. oOn Signal Processing.1998, 46(12):3206-3219[3]Ozaktas H M and B Barshan, et al.. Convolution, filtering and multiplexing in fractional domains and their relation to chirp and wavelet transforms[J]. Journal of Optical Society America (A), 1993, 11(2): 547-559.[4]孙晓兵,保铮. 分数阶Fourier变换及其应用[J]. 电子学报, 1996, 24(12): 60-65. Xun Xiao-bing and Bao Zheng. Fractional Fourier transform and its application[J]. Acta Electronica Sinica, 1996, 24(12): 60-65.[5]陶然,齐林,等. 分数阶 Fourier 变换的原理与应用[M]. 北京: 清华大学出版社, 2004: 1-6. Tao Ran and Qi Lin, et al.. Theory and Applications of the fractional Fourier Transform[M]. Beijing: Tsinghua University Press, 2004: 1-6.[6]Ozaktas H M and Arikan Orhan, et al.. Digital computation of the fractional Fourier transform[J].IEEE Trans. on Signal Processing.1996, 44(9):2141-2150[7]Pei Soo-Chang and Yeh Min-Hung, et al.. Discrete fractional Fourier transform based on orthogonal projections[J].IEEE Trans. On Signal Processing.1999, 47(5):1335-1348[8]Candan C and Kutay M A, et al.. The discrete fractional Fourier transform[J].IEEE Trans. on Signal Processing.2000, 48(5):1329-1337[9]Almeida L B. The fractional Fourier transform and time-frequency representations[J].IEEE Trans. on Signal Processing.1994, 42(11):3084-3091[10]董永强,陶然,等. 基于分数阶Fourier 变换的 SAR 运动目标 检测与成像[J]. 兵工学报, 1999, 20(2):132-136. Dong Yong-qiang and Tao Ran, et al.. SAR moving target detection and imaging based on fractional Fourier transform[J]. Acta Rmamentarii, 1999, 20(2): 132-136.[11]Sun Hong-Bo and Liu Guo-Sui, et al.. Application of the fractional Fourier transform to moving target detection in airborne SAR[J].IEEE Trans. on Aerospace and Electronics Systems.2002, 38(4):1416-1424[12]齐林,陶然,等. 基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J]. 中国科学, E辑, 2003,33(8):749-759. Qi Lin and Tao Ran, et al.. Multicomponent LFM signal detection and parameter estimation based on fractional Fourier transform[J]. Science in China, Series E, 2003, 33(8): 749-759.[13]Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J].IEEE Trans. on Signal Processing.1995, 43(6):1511-1515
  • 加载中
计量
  • 文章访问数:  3781
  • HTML全文浏览量:  139
  • PDF下载量:  1346
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-20
  • 修回日期:  2006-08-07
  • 刊出日期:  2007-10-19

目录

    /

    返回文章
    返回