高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达目标一维距离像识别中的最优因式分析子空间法

周代英 杨万麟

周代英, 杨万麟. 雷达目标一维距离像识别中的最优因式分析子空间法[J]. 电子与信息学报, 2007, 29(10): 2341-2345. doi: 10.3724/SP.J.1146.2006.00268
引用本文: 周代英, 杨万麟. 雷达目标一维距离像识别中的最优因式分析子空间法[J]. 电子与信息学报, 2007, 29(10): 2341-2345. doi: 10.3724/SP.J.1146.2006.00268
Zhou Dai-ying, yang Wan-lin. Recognition of Radar Target Based on Optimal Factor Analysis Subspace Using Rangeprofile[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2341-2345. doi: 10.3724/SP.J.1146.2006.00268
Citation: Zhou Dai-ying, yang Wan-lin. Recognition of Radar Target Based on Optimal Factor Analysis Subspace Using Rangeprofile[J]. Journal of Electronics & Information Technology, 2007, 29(10): 2341-2345. doi: 10.3724/SP.J.1146.2006.00268

雷达目标一维距离像识别中的最优因式分析子空间法

doi: 10.3724/SP.J.1146.2006.00268

Recognition of Radar Target Based on Optimal Factor Analysis Subspace Using Rangeprofile

  • 摘要: 该文提出一种基于因式分析子空间进行特征提取的雷达目标识别方法。通过对目标训练样本集进行因式分析,在最大似然估计准则和最小错误分类率准则下建立最优因式分析子空间,利用因式分析子空间能够增强同类目标特征之间的相关性,提高同类目标特征的聚集度,从而改善目标识别性能。对三类飞机目标的仿真实验结果表明了方法的有效性。
  • Rihaczek A W and Hershkowitz S J. Theory and Practice of Radar Target Identification[M]. Norwood, MA: Artech House, 2000: 168-181.[2]Hudson S and Psaltis D. Correlation filters for aircraft identification from radar range profiles[J].IEEE Trans. on Aerospace and Electronic Systems.1993, 29(3):741-748[3]Nelson D E, Starzyk J A, and Ensley D D. Iterated wavelet transformation and discrimination for HRR radar target recognition[J]. IEEE Trans. on System Man and Cybernetics-part: system and humans, 2002, 33(1): 52-57.[4]Jacobs S P and Sullivan J A. Automatic target recognition using sequences of high range resolution radar rangeprofiles[J].IEEE Trans. on Aerospace and Electronic Systems.2000, 36(2):364-381[5]Novak L M and Owirka G J. Radar target recognition using an eigen-image approach[C]. IEEE International Radar Conference, America, 1994: 129-131.[6]Liu B Y and Yang W L. Radar target recognition using canonical transformation to extract features[J].Proc. SPIE.1998, 3545:368-371[7]Hinton G, Dayan P, and Revow M. Modeling the manifolds of images of handwritten digits[J].IEEE Trans. on Neural Networks.1997, 8(1):65-74[8]Kambhatla N and Leen T K. Fast nonlinear dimension reduction. In Advances in Neural Information Processing Systems[C]. Cowan J, Tesauro G, and Alspector J, Eds. San Mateo. CA: Morgan Kaufman, 1994, 6: 152-159.[9]Itagaki A.[J].Takashima M and Ashino Y, et al.. Fuzzy inference systems by genetic algorithm and factor analysis modeling for multivariate complex systems[C]. IEEE Symposium on Emerging Technologies Factory Automation, Europe.1994,:-[10]Ghahramani Z and Hinton G. The EM algorithm for mixtures of factor analyzers[R]. Uni. Toronto, Toroto, Ont., Cananda, Tech. Rep. CRG-TR-96-1, 1996.[11]Saul L K and Rahim M G. Maximum likelihood and Minimum classification error factor analysis for automatic speech recognition[J].IEEE Trans. on Speech and Audio Processing.2000, 8(2):115-125
  • 加载中
计量
  • 文章访问数:  2947
  • HTML全文浏览量:  61
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-09
  • 修回日期:  2006-09-13
  • 刊出日期:  2007-10-19

目录

    /

    返回文章
    返回