高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AdaBoost的音乐情绪分类

王磊 杜利民 王劲林

王磊, 杜利民, 王劲林. 基于AdaBoost的音乐情绪分类[J]. 电子与信息学报, 2007, 29(9): 2067-2072. doi: 10.3724/SP.J.1146.2006.00120
引用本文: 王磊, 杜利民, 王劲林. 基于AdaBoost的音乐情绪分类[J]. 电子与信息学报, 2007, 29(9): 2067-2072. doi: 10.3724/SP.J.1146.2006.00120
Wang Lei, Du Li-min, Wang Jin-lin. Mood Classification of Music Using AdaBoost[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2067-2072. doi: 10.3724/SP.J.1146.2006.00120
Citation: Wang Lei, Du Li-min, Wang Jin-lin. Mood Classification of Music Using AdaBoost[J]. Journal of Electronics & Information Technology, 2007, 29(9): 2067-2072. doi: 10.3724/SP.J.1146.2006.00120

基于AdaBoost的音乐情绪分类

doi: 10.3724/SP.J.1146.2006.00120

Mood Classification of Music Using AdaBoost

  • 摘要: 随着流媒体应用的蓬勃兴起,音频信号的自动分类开始成为工程与学术关注的热点之一。根据音乐信号对乐曲表现的情绪进行分类,由于涉及音乐信号的社会属性和自然属性的综合表征与模糊分类,因此处理方法相应需要在各种传统表征与分类方法的基础上进行机制筛选与架构优化。该文探讨了在AdaBoost算法,K-L变换和GMM模型的基础上构造弱分类器的方法,采用多层分类器结构,成功地实现了对音乐信号进行情绪分类。初步的实验对163首歌曲进行平静(Calm),悲伤(Sad),激动(Exciting)以及愉悦(Pleasant)4种类别的分类,训练集和测试集的分类准确率分别达到97.5%和93.9%,展示了这种方法的可行性和进一步发展的潜在价值。
  • Landy M. Emotions and music, how does music convey emotion? From learning to performing. Canadian Music Educator, 2004, 45(4): 28-33.[2]Schapire R E. A brief introduction to boosting, proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, 1999: 1401-1406.[3]Viola P and Jones M J. Robust real-time face detection[J].International Journal of Computer Vision.2004, 57(2):137-154[4]Guo G D, Zhang H J, and Li S Z. Boosting for content-based audio classification and retrieval: An evaluation. International Conference on Multimedia and Expo, Tokyo, 2001: 253-256.[5]Xiong Z Y and Huang T S. Boosting speech / non-speech classification using averaged mel-frequency cepstrum coefficients features. IEEE Pacific Rim Conference on Multimedia, Hsinchu, 2002: 573-580.[6]Ravindran S and Anderson D. Boosting as a dimensionality reduction tool for audio classification, Proceedings of IEEE International Symposium on Circuits and Systems, Vancouver, 2004: III-465-8.[7]Zhang T and Kuo J. Hierarchical system for content-based audio classification and retrieval. Proceedings of SPIEs Conference on Multimedia Storage and Archiving Systems III, Boston, 1998: 398-409.[8]Liu D, Lu L, and Zhang H J. Automatic mood detection from acoustic music data. Proceedings of International Symposium on Music Information Retrieval, Baltimore, 2003: 81-87.[9]Scheirer E D. Tempo and beat analysis of acoustic musical signals[J].Journal of Acoustic Society of America.1998, 103(1):588-601[10]Freund Y and Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences.1997, 55(1):119-139[11]边肇祺,张学工. 模式识别. 第二版.北京:清华大学出版社,2002: 第9章.[12]Huang X D, Acero A, and Hon H W. Spoken Language Processing: A Guide to Theory, Algorithm and System Development. 1st Edition. Upper Saddle River, NJ, Prentice Hall PTR, 2001, Chapter 5.
  • 加载中
计量
  • 文章访问数:  3982
  • HTML全文浏览量:  79
  • PDF下载量:  1722
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-24
  • 修回日期:  2006-05-17
  • 刊出日期:  2007-09-19

目录

    /

    返回文章
    返回