高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相邻尺度积系数的半软阈值小波滤波

孟晋丽 潘泉 张洪才

孟晋丽, 潘泉, 张洪才. 基于相邻尺度积系数的半软阈值小波滤波[J]. 电子与信息学报, 2007, 29(7): 1649-1652. doi: 10.3724/SP.J.1146.2005.01699
引用本文: 孟晋丽, 潘泉, 张洪才. 基于相邻尺度积系数的半软阈值小波滤波[J]. 电子与信息学报, 2007, 29(7): 1649-1652. doi: 10.3724/SP.J.1146.2005.01699
Meng Jin-li, Pan Quan, Zhang Hong-cai. Denoising by Multiscale Product Coefficient Semi-soft Thresholding[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1649-1652. doi: 10.3724/SP.J.1146.2005.01699
Citation: Meng Jin-li, Pan Quan, Zhang Hong-cai. Denoising by Multiscale Product Coefficient Semi-soft Thresholding[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1649-1652. doi: 10.3724/SP.J.1146.2005.01699

基于相邻尺度积系数的半软阈值小波滤波

doi: 10.3724/SP.J.1146.2005.01699

Denoising by Multiscale Product Coefficient Semi-soft Thresholding

  • 摘要: 针对相邻尺度积系数硬阈值滤波后的MSE函数不连续,最优阈值选取困难,该文构造了一种基于相邻尺度积系数的半软阈值函数。其为收缩因子函数与小波系数的乘积,对小波系数无穷可导、可在阈值邻域内对小波系数自适应收缩。进而通过极小化SURE(Stein Unbiased Risk Estimate)估计得到MSE意义下自适应于信号和噪声的最优阈值。大量仿真实验表明:采用本文构造的半软阈值函数,可改善基于相邻尺度积系数的滤波算法性能。
  • Donoho D L. De-noising by soft-thresholding [J].IEEE Trans. on Information Theory.1995, 41(3):613-627[2]Pan Quan, Zhang Lei, and Dai G Zh, et al.. Two denoising methods by wavelet transform [J].IEEE Trans. on Signal Processing.1999, 47(12):3401-3406[3]Gao Hong-Ye and Bruce A G. WaveShrink and semisoft shrinkage. StaSci Research Report No. 39, 1995.[4]Zhang X P and Desai M D. Thresholding neural network for adaptive noise reduction [J].IEEE Trans. on Neural Networks.2001, 12(3):567-584[5]Xu Y S, Weaver J B, and Healy D M, et al.. Wavelet transform domain filters: a spatially selective noise filtration technique [J].IEEE Trans. on Image Processing.1994, 3(6):747-758[6]Zhang Lei and Bao Paul. Denoising by spatial correlation thresholding [J].IEEE Trans. on Circuits and System for Video Technology.2003, 13(6):535-538[7]Jansen M. Noise reduction by wavelet thresholding. Springer Verlag, Lecture notes in Statistics, vol. 161: 2001.[8]潘泉,戴冠中,张洪才. 具有理论阈值的小波域滤波方法[J]. 宇航学报, 1998, 19(4): 81~85.Pan Quan, Dai Guan-zhong, and Zhang Hong-cai. A threshold selection method for wavelet transform domain filter. Journal of Astronautics, 1998, 19(4): 81-85.[9]Mallat S and Zhong S. Characterization of signals from multiscale edges [J].IEEE Trans. on Pattern Analysis and Machine Intelligence.1992, 14(7):710-732[10]Donoho D L and Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J].Journal of the American Statistical Association.1995, 90(432):1200-1224[11]Stein C. Estimation of the mean of a multivariate normal distribution[J].The Annals of Statistics.1981, 9(6):1135-
  • 加载中
计量
  • 文章访问数:  3468
  • HTML全文浏览量:  133
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-28
  • 修回日期:  2006-11-13
  • 刊出日期:  2007-07-19

目录

    /

    返回文章
    返回