高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种复合腔回旋管注波互作用的数值模拟和分析

汪菲 罗积润 焦重庆

汪菲, 罗积润, 焦重庆. 一种复合腔回旋管注波互作用的数值模拟和分析[J]. 电子与信息学报, 2007, 29(8): 2014-2018. doi: 10.3724/SP.J.1146.2005.01590
引用本文: 汪菲, 罗积润, 焦重庆. 一种复合腔回旋管注波互作用的数值模拟和分析[J]. 电子与信息学报, 2007, 29(8): 2014-2018. doi: 10.3724/SP.J.1146.2005.01590
Wang Fei, Luo Ji-run, Jiao Chong-qing. Simulation and Analysis of the Beam-Wave Interaction in a Complex Cavity Gyrotron with Gradual Transition[J]. Journal of Electronics & Information Technology, 2007, 29(8): 2014-2018. doi: 10.3724/SP.J.1146.2005.01590
Citation: Wang Fei, Luo Ji-run, Jiao Chong-qing. Simulation and Analysis of the Beam-Wave Interaction in a Complex Cavity Gyrotron with Gradual Transition[J]. Journal of Electronics & Information Technology, 2007, 29(8): 2014-2018. doi: 10.3724/SP.J.1146.2005.01590

一种复合腔回旋管注波互作用的数值模拟和分析

doi: 10.3724/SP.J.1146.2005.01590

Simulation and Analysis of the Beam-Wave Interaction in a Complex Cavity Gyrotron with Gradual Transition

  • 摘要: 该文基于电磁粒子模拟技术,对一种Ka波段基波渐变复合腔回旋管振荡器的注波互作用过程进行了详细的模拟计算,分析了腔体几何参数、电子注半径、工作电流及工作磁场变化对互作用效率的影响,讨论了工作模式的稳定性。模拟结果表明,适当选择上述参数,在70kV,17A及速度比1.5的电子注推动下,平均功率可达716kW,互作用效率大于60%,且工作稳定。
  • Felch K L, Danly B G, and Jory H R, et al.. Characteristics and applications of fast-wave gyro-devices[J].Proc. IEEE.1999, 87(5):752-781[2]Carmel Y, Chu K R, and Ganguly A K, et al.. Realization of highly stable and efficient gyrotron for controlled fusion research[J].Phys. Rev. Lett.1983, 50(1):112-116[3]Flech K L, Er R B, and Huey H, et al.. A 60GHz, 200kW CW gyrotron with a pure output mode[J].Int.J.Electronics.1984, 57(6):815-820[4]罗积润等. 耦合双腔回旋管的束波互作用分析. 电子科学学刊,1987, 9(6): 507-517. Luo Ji-run, et al.. Analysis of beam-wave interaction in the coupled double-cavity gyrotron. Journal of Electronics (China), 1987, 9(6): 507-517.[5]Li H F, Xie Z L, and Wang W X. A 35GHz low-voltage third-harmonic gyrotron with a permanent magnet system[J].IEEE Trans. on Plasma Sci.2003, 31(2):264-271[6]Fliflet A W, Lee R C, and Read M E. Self-consistent field model for the complex cavity gyrotron[J].Int.J.Electronics.1988, 65(3):273-283[7]李宏福,蒙林. 复合腔回旋管的分析与数值计算. 电子学报,1991, 19(2): 8-12. Li H F and Meng L. Analysis and numerical results of complex cavity gyrotron. Acta Electronica Sinica, 1991, 19(2): 8-12.[8]Goplen B, Ludeking L, Smithe D, and Warren G. User- configurable MAGIC for electromagnetic PIC calculations[J].Comput. Phys. Commun.1995, 87(1, 2):54-86[9]Baik Chan-Wook, Jeon Seok-Gy, and Kim Dae-Ho, et al.. Third harmonic frequency multiplication of a two-stage tapered gyrotron TWT amplifier[J].IEEE Trans. on Electron Devices.2005, 52(1):1-10[10]Wu Hao, Liou Rong Lin, and McCurdy A H. PIC code simulation of pulsed radiation in a tapered closed-cavity gyrotron[J].IEEE Trans. on Plasma Sci.1996, 24(3):606-612[11]Chu K R and Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers[J].IEEE Trans. on Plasma Sci.1988, 16(2):90-104[12]Danly B G. Generalized nonlinear harmonic gyrotron theory[J].Phys.Fluids.1986, 29(2):561-567
  • 加载中
计量
  • 文章访问数:  3078
  • HTML全文浏览量:  84
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-08
  • 修回日期:  2006-05-08
  • 刊出日期:  2007-08-19

目录

    /

    返回文章
    返回