高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同Margin的人脸特征选择及识别方法

李伟红 陈伟民 杨利平 龚卫国

李伟红, 陈伟民, 杨利平, 龚卫国. 基于不同Margin的人脸特征选择及识别方法[J]. 电子与信息学报, 2007, 29(7): 1744-1748. doi: 10.3724/SP.J.1146.2005.01567
引用本文: 李伟红, 陈伟民, 杨利平, 龚卫国. 基于不同Margin的人脸特征选择及识别方法[J]. 电子与信息学报, 2007, 29(7): 1744-1748. doi: 10.3724/SP.J.1146.2005.01567
Li Wei-hong, Chen Wei-min, Yang Li-ping, Gong Wei-guo. Face Feature Selection and Recognition Based on Different Types of Margin[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1744-1748. doi: 10.3724/SP.J.1146.2005.01567
Citation: Li Wei-hong, Chen Wei-min, Yang Li-ping, Gong Wei-guo. Face Feature Selection and Recognition Based on Different Types of Margin[J]. Journal of Electronics & Information Technology, 2007, 29(7): 1744-1748. doi: 10.3724/SP.J.1146.2005.01567

基于不同Margin的人脸特征选择及识别方法

doi: 10.3724/SP.J.1146.2005.01567
基金项目: 

国家教育部科学研究重点项目(02057),重庆市自然科学基金重点研究项目(CSTC2005BA2002)和重庆市自然科学基金(CSTC2005 BB2181)资助课题

Face Feature Selection and Recognition Based on Different Types of Margin

  • 摘要: Margin在机器学习中具有很重要的意义,基于margin的特征选择方法就是从分类的角度对特征集各特征的权重进行分析。该文对不同的margin进行了分析,提出将sample-margin和hypothesis-margin分别作为特征选择标准对SBS特征选择方法进行改进,然后设计具有最佳超参数的SVM多项式分类器进行人脸识别。实验在FRERT人脸图像库上进行并与Relief特征选择方法进行了比较,对SVM和NN分类器的实验结果也进行了分析。实验结果显示:该文提出的人脸识别特征选择及识别方法是有效、适用的。
  • Langley P. Selection of relevant features in machine learning. In: Proc. AAAI Fall Symposium on Relevance, New Orleans, Louisiana, 1994: 140-144.[2]Gilad-Bachrach R.[J].Navot A, and Tishby N. Margin based feature selection - theory and algorithms. In proceedings of the 21st International Conference on Machine Learning (ICML), Banff, Alberta, Canada, July 4-.2004,:-[3]Crammer K, Gilad-Bachrach R, Navot A, and Tishby N. Margin analysis of the lvq algorithm. Proc.17th Conference on Neural Information Processing Systems, Banff, Alberta, Canada, 2002: 462-469.[4]Vapnik V. The Nature of Statistical Learning Theory. Spring- Verlag, 1995.[5]Freund Y and Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences.1997, 55(1):119-139[6]Buckingham L and Geva L. Lvq is a maximum margin algorithm. In Pacific Knowledge Acquisition Workshop PKAW2000, Sydney, Australia, 2000.[7]Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, and Vapnik V. Feature selection for SVMs. In Advances in Neural Information Processing Systems. MIT Press, 2000, (13): 668-674.[8]Grandvalet Y and Canu S. Adaptive scaling for feature selection in svms. In Advances in Neural Information Processing Systems, MIT Press, 2003, (15): 553-560.[9]Guyon I, Weston J, Barnhill S, and Vapnik V. Gene selection for cancer classification using support vector machines[J].Machine Learning.2002, 46(1/3):389-422[10]Ahmad A and Dey L. A feature selection technique for classificatory analysis[J].Pattern Recognition Letters.2005, 26(1):43-56[11]Weihong L and Weiguo G. Feature selection based KPCA, SVM and GSFS for face recognition. Proceeding of 3rd International Conference on Advances in Pattern Recognition, London, 2005, 2: 344-350.[12]Bartlett P. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network[J].IEEE Trans. on Information Theory.1998, 44(2):525-536[13]Kira K and Rendell L A. The feature selection problem: traditional methods and a new algorithm. In: Proc. of the Ninth National Conf. on Artificial Intelligence, Menlo Park, CA, USA, 1992: 129-134.[14]Nastar C and Ayache N. Frequency-based non-rigid motion analysis[J].IEEE Trans. on Pattern Anal. Machine Intell.1996, 18(11):1067-1079
  • 加载中
计量
  • 文章访问数:  3443
  • HTML全文浏览量:  80
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-12-05
  • 修回日期:  2006-04-03
  • 刊出日期:  2007-07-19

目录

    /

    返回文章
    返回