高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时频形态学滤波的能量积累检测

尚海燕 水鹏朗 张守宏 张雅斌 朱天桥

尚海燕, 水鹏朗, 张守宏, 张雅斌, 朱天桥. 基于时频形态学滤波的能量积累检测[J]. 电子与信息学报, 2007, 29(6): 1416-1420. doi: 10.3724/SP.J.1146.2005.01381
引用本文: 尚海燕, 水鹏朗, 张守宏, 张雅斌, 朱天桥. 基于时频形态学滤波的能量积累检测[J]. 电子与信息学报, 2007, 29(6): 1416-1420. doi: 10.3724/SP.J.1146.2005.01381
Shang Hai-yan, Shui Peng-lang, Zhang Shou-hong, Zhang Ya-bin, Zhu Tian-qiao. Energy Integration Detection via Time-Frequency Distribution and Morphological Filtering[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1416-1420. doi: 10.3724/SP.J.1146.2005.01381
Citation: Shang Hai-yan, Shui Peng-lang, Zhang Shou-hong, Zhang Ya-bin, Zhu Tian-qiao. Energy Integration Detection via Time-Frequency Distribution and Morphological Filtering[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1416-1420. doi: 10.3724/SP.J.1146.2005.01381

基于时频形态学滤波的能量积累检测

doi: 10.3724/SP.J.1146.2005.01381
基金项目: 

国家部委基金(40106020203)和教育部博士点基金(20050701014)资助课题

Energy Integration Detection via Time-Frequency Distribution and Morphological Filtering

  • 摘要: 许多实际应用中,强噪声背景下信号能量的长时间积累是有效检测的关键。该文利用信号在时频平面上的能量聚集特性,提出基于时频域形态学滤波的能量积累检测方法。首先确定时频分布的最优核,计算观测序列的时频分布;然后用阈值处理和形态学滤波估计时频分布的高能量支撑区域;最后累加这些区域的时频能量作为统计量进行检测。仿真结果表明,这种方法在低信噪比下可以有效工作。
  • Wood J C and Barry D T. Linear signal synthesis using the Radon-Wigner transform[J].IEEE Trans. on SP.1994, 42(8):2105-2111[2]Sun Y and Willett P. Hough transform for long Chrip detection. IEEE Trans. on AES, 2002, 38(2): 553-569.[3]Ivanovic W N, Dakovic M, and Stankovic L J. Performance of quadratic time-frequency distributions as instantanous frequency estimators[J].IEEE Trans. on SP.2003, 51(1):77-89[4]Xianrong W, Sifeng Z, and Hengyu K, et al... Target detection with high frequency surface wave radar in co-channel interference. IEE Proc.-Radar Sonar Navig. 2005, 152(2): 97-103.[5]Xing Mengdao, Bao Zheng, and Qiang Yong. Transient interference excision in OTHR. Acta Electronica Sinica, 2002, 30(6): 823-826.[6]Amin M G. Minimum Variance time-frequency distribution kernels for signals in additive noise[J].IEEE Trans. on SP.1996, 44(9):2352-2356[7]Rousseeuw P J and Croux C. Alternatives to the median absolute deviation[J].J. of the American Statistical Association.1993, 88(12):1273-1283[8]Heijams H and Ronse C. The algebraic basis of mathematical morphology, Ⅱ. Opening and Closing, Computer Vision, Graphics and Image Processing, 1991, 54(1): 74-79.
  • 加载中
计量
  • 文章访问数:  3339
  • HTML全文浏览量:  102
  • PDF下载量:  895
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-31
  • 修回日期:  2006-05-22
  • 刊出日期:  2007-06-19

目录

    /

    返回文章
    返回