高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于融合策略自适应的多线索跟踪方法

钟小品 薛建儒 郑南宁 平林江

钟小品, 薛建儒, 郑南宁, 平林江. 基于融合策略自适应的多线索跟踪方法[J]. 电子与信息学报, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350
引用本文: 钟小品, 薛建儒, 郑南宁, 平林江. 基于融合策略自适应的多线索跟踪方法[J]. 电子与信息学报, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350
Zhong Xiao-pin, Xue Jian-ru, Zheng Nan-ning, Ping Lin-jiang. An Adaptive Fusion Strategy Based Multiple-Cue Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350
Citation: Zhong Xiao-pin, Xue Jian-ru, Zheng Nan-ning, Ping Lin-jiang. An Adaptive Fusion Strategy Based Multiple-Cue Tracking[J]. Journal of Electronics & Information Technology, 2007, 29(5): 1017-1022. doi: 10.3724/SP.J.1146.2005.01350

基于融合策略自适应的多线索跟踪方法

doi: 10.3724/SP.J.1146.2005.01350
基金项目: 

创新群体研究资助计划(60021302),国家自然科学基金(60405004)和西安交通大学电信学院青年教师科研基金资助课题

An Adaptive Fusion Strategy Based Multiple-Cue Tracking

  • 摘要: 基于多线索融合的跟踪是跟踪领域近年来的研究热点之一,该文结合两种常用的线索融合方式:乘性融合及加权和融合,提出一种融合策略自适应的鲁棒跟踪方法。该方法使用粒子滤波技术,统计样本的二阶中心矩并求Frobenius范数以表征线索的受噪声污染程度,最后适时切换两种融合策略。实践证明,新的融合策略比传统单一的融合方式更鲁棒。
  • Shen C H, Hengel A, and Dick A. Probabilistic multiple cue integration for particle filter based tracking. Proc. VIIth Digital Image Computing: Techniques and Applications, Melbourne, Australia, 2003, I: 399-408.[2]Li P H and Chaumette F. Image cues fusion for object tracking based on particle filter. F J Perales and B A Draper (Eds.): AMDO 2004, LNCS 3197: 99-107.[3]Leichter I, Lindenbaum M, and Rivlin E. A Probabilistic framework for combining tracking algorithms. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004, (2): 445-451.[4]Spengler M and Schiele B. Towards robust multi-cue integration for visual tracking. International Journal of Machine Vision and Applications, 2003, (14): 50-58.[5]Collins R and Liu Y. On-line selection of discriminative tracking features. Proceedings of International Conference on Computer Vision, Nice, France, 2003: 346-352.[6]Toyama K and Hager G. Incremental focus of attention for robust vision-based tracking[J].International Journal of Computer Vision.1999, 35(1):45-63[7]Kittler J and Hatef M, et al.. On combining classifiers. IEEE Trans. on PAMI, 1998, 20: 226-238.[8]Triesch J and Malsburg C. Democratic integration: self-organized integration of adaptive cue[J].Neural Computation.2001, 13:2049-2074[9]Jacobs R. What determines visual cue reliability? Trends in Cognitive Sciences, 2002, 6(8): 345-350.[10]Arulampalam S, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans. on Signal Processing.2002, 50(2):174-188[11]Comaniciu D, Ramesh V, and Meer R. Real-time tracking of non-rigid objects using mean shift. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, USA, 2000, Vol.2: 142-149.[12]Perez P, Hue C, Vermaak J, and Gangnet M. Color-based probabilistic tracking. Proc. European Conf. Computer Vision, Copenhagen, Denmark, 2002, Vol(I): 661-675.[13]Huttenlocher D, Klanderman G, and Rucklidge W. Comparing images using the Hausdorff distance. IEEE Trans. on PAMI, 1993, 15(9): 850-863.
  • 加载中
计量
  • 文章访问数:  3061
  • HTML全文浏览量:  90
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-25
  • 修回日期:  2006-06-30
  • 刊出日期:  2007-05-19

目录

    /

    返回文章
    返回